„Felsőbb matematika villamosmérnököknek - Sztochasztika” változatai közötti eltérés
a szak frissítése |
|||
| (14 közbenső módosítás, amit 6 másik szerkesztő végzett, nincs mutatva) | |||
| 1. sor: | 1. sor: | ||
A Felsőbb matematika tárgyblokk egyik tantárgya, [[Villamosmérnök MSc | villamosmérnök MSc]] képzésen '''Sztochasztika''', [[Mérnök informatikus MSc | mérnök informatikus MSc]] képzésen '''Sztochasztika II.''' néven. | A Felsőbb matematika tárgyblokk egyik tantárgya, [[Villamosmérnök MSc | villamosmérnök MSc]] és [[Űrmérnök MSc | űrmérnök MSc]] képzésen '''Sztochasztika''', [[Mérnök informatikus MSc | mérnök informatikus MSc]] képzésen '''Sztochasztika II.''' néven. | ||
{{Tantárgy | {{Tantárgy | ||
| név = Felsőbb matematika villamosmérnököknek<br>Sztochasztika | | név = Felsőbb matematika villamosmérnököknek<br>Sztochasztika | ||
| tárgykód = TE90MX55 | | tárgykód = TE90MX55 | ||
| szak = MSc Villamosmérnök | | szak = MSc Villamosmérnök, MSc Űrmérnök | ||
| kredit = 3 | | kredit = 3 | ||
| félév = 2. félév (ősz) | | félév = 2. félév (ősz) | ||
| 14. sor: | 14. sor: | ||
| kiszh = nincs | | kiszh = nincs | ||
| nagyzh = 2 db | | nagyzh = 2 db | ||
| hf = | | hf = 5 db fakultatív | ||
| vizsga = | | vizsga = nincs | ||
| levlista = felmath{{kukac}}sch.bme.hu | | levlista = felmath{{kukac}}sch.bme.hu | ||
| tad = https://portal.vik.bme.hu/kepzes/targyak/TE90MX55/ | | tad = https://portal.vik.bme.hu/kepzes/targyak/TE90MX55/ | ||
| 42. sor: | 42. sor: | ||
==Kedvcsináló== | ==Kedvcsináló== | ||
===2016 ősz --[[Szerkesztő:Kiss Balázs|Kiss Balázs]] ([[Szerkesztővita:Kiss Balázs|vita]]) 2016. december 14., 11:55 (UTC)=== | ===2017 ősz VILLAMOSMÉRNÖK KURZUS === | ||
Az előadásokat Tóth Péter tartja és egész érthetően magyaráz, sokat segít a megértésben, ha ott vagy előadáson. A házi feladatok habár fakultatívak, de érdemes megcsinálni két okból is, egyrészt mert a plusz pontok jól jöhetnek év végén, másrészt a ZH-kban nagyon hasonló feladatok vannak, segít a felkészülésben. | |||
Továbbá, mivel rengeteg régi ZH és HF elérhető az előadó honlapján, érdemes néha keresgélni, mert sokszor egy az egyben vannak átvéve feladatok a házikban vagy ZH-kban. | |||
===2016 ősz INFORMATIKUS KURZUS --[[Szerkesztő:Kiss Balázs|Kiss Balázs]] ([[Szerkesztővita:Kiss Balázs|vita]]) 2016. december 14., 11:55 (UTC)=== | |||
Ide mutat az infós kurzus oldala is, holott mi eléggé máshogy tanuljuk, mint a villanyosok. | |||
A tárgy két "fél-félévre" van osztva.<br /> | A tárgy két "fél-félévre" van osztva.<br /> | ||
'''Az első felét''' Rónyai Lajos tartja, aki egy igazán nagy koponya. Bár kissé "randomizált"-nak tűnik az anyag, első sorban próbáltak olyan, informatikában is használt alkalmazásait keresni a sztochasztikának, amihez tud egy informatikus hallgató kapcsolódni. Ez többé-kevésbé sikerül csak, de azért megéri bejárni előadásra - első sorban azért, hogy ne a feltöltött nagy jegyzetből tanulj, hanem saját magad készíts el egy írott jegyzetet. Elsőre nekem túl nagy falat volt bejárás nélkül ez a rész, de a rendszeresen látogatott órák után össze lehetett kaparni a hármast, ha az ember nagyjából átlátta a különböző témákat. Nagyon részletes feladatmegoldás nincs, és az apróbb pontatlanságok ellenére is azért át lettünk lökdösve az első ZH-n. A feladatok közül kettő volt ami számolós és csak a "haladóknak" szól, a többi inkább elméleti tudásra kérdezett rá (ez elég a hármashoz). Kicsit megerőlteted magad, még érdekes is a modern matematika nagy koponyáinak egy-két módszerének megismerése, és magyar matematikusok munkájába belekóstolás. <br /> | '''Az első felét''' Rónyai Lajos tartja, aki egy igazán nagy koponya. Bár kissé "randomizált"-nak tűnik az anyag, első sorban próbáltak olyan, informatikában is használt alkalmazásait keresni a sztochasztikának, amihez tud egy informatikus hallgató kapcsolódni. Ez többé-kevésbé sikerül csak, de azért megéri bejárni előadásra - első sorban azért, hogy ne a feltöltött nagy jegyzetből tanulj, hanem saját magad készíts el egy írott jegyzetet. Elsőre nekem túl nagy falat volt bejárás nélkül ez a rész, de a rendszeresen látogatott órák után össze lehetett kaparni a hármast, ha az ember nagyjából átlátta a különböző témákat. Nagyon részletes feladatmegoldás nincs, és az apróbb pontatlanságok ellenére is azért át lettünk lökdösve az első ZH-n. A feladatok közül kettő volt ami számolós és csak a "haladóknak" szól, a többi inkább elméleti tudásra kérdezett rá (ez elég a hármashoz). Kicsit megerőlteted magad, még érdekes is a modern matematika nagy koponyáinak egy-két módszerének megismerése, és magyar matematikusok munkájába belekóstolás. <br /> | ||
| 48. sor: | 53. sor: | ||
A ZH életem első matek ötöse az egyetemen - nem volt túl nehéz, a korábbi ZH-khoz képest talán picit könyebb volt (sok a tágyon belüli változás az évek alatt és az anyag itt nincs is fent úgy mint az első felének a tágyhoz!). Azért kellett rá tanulni 2-3 napot, és főleg feladatmegoldásban kell otthon lenni (kb. 6-8 típusfeladat van.) <br /> | A ZH életem első matek ötöse az egyetemen - nem volt túl nehéz, a korábbi ZH-khoz képest talán picit könyebb volt (sok a tágyon belüli változás az évek alatt és az anyag itt nincs is fent úgy mint az első felének a tágyhoz!). Azért kellett rá tanulni 2-3 napot, és főleg feladatmegoldásban kell otthon lenni (kb. 6-8 típusfeladat van.) <br /> | ||
A vizsga csak a második anyagrészből van, és hangsúlyosabb a 2. ZH és a vizsga közötti anyagrész. (főleg a Markov Láncok, ifnósoknak az nem volt a ZH-ban) Szerintem egy korrekt számonkérésű tárgy. | A vizsga csak a második anyagrészből van, és hangsúlyosabb a 2. ZH és a vizsga közötti anyagrész. (főleg a Markov Láncok, ifnósoknak az nem volt a ZH-ban) Szerintem egy korrekt számonkérésű tárgy. | ||
'''Vizsgára''' ugyan úgy érdemes készülni, mint Zh-ra, szintén feladatok lesznek. Ami biztosan várható, az egy sima Markov-láncos és egy folytonos idejűs példa. Kicsit mérges volt ránk a tanár, mert a vizsgán senki nem tudott egy e-ados tagok lederiválni, ezekre figyeljetek oda (alap szintű deriválás, mátrix szorzás, mátrix hatványozás, Gauss-elimináció stb. ) | |||
== Segédanyagok == | == Segédanyagok == | ||
*[[Média:FmSztoch_vizsgajegyzet_2016_osz.docx | '''2016-os INFÓS vizsgához szükséges elméleti rövid összefoglaló (kiemelve amit tudni kell a feladatokhoz) -Forest''']] | |||
*[[Média:FmSztoch_jegyzet_2013_segedlet.pdf | '''A ZH és a vizsga során használható segédanyagok összefűzve''']] | *[[Média:FmSztoch_jegyzet_2013_segedlet.pdf | '''A ZH és a vizsga során használható segédanyagok összefűzve''']] | ||
*[[Média:FmSztoch_jegyzet_eloszlas_khi2.pdf | Hasznos leírás a khí-négyzet eloszlásokról, mikor kell illeszkedés, függetlenség, ill. homogenitás-vizsgálatot alkalmazni.]] | *[[Média:FmSztoch_jegyzet_eloszlas_khi2.pdf | Hasznos leírás a khí-négyzet eloszlásokról, mikor kell illeszkedés, függetlenség, ill. homogenitás-vizsgálatot alkalmazni.]] | ||
| 78. sor: | 85. sor: | ||
== Házi feladat == | == Házi feladat == | ||
* 2017: [[Média:VillamosMSc_Sztoch_HF_megoldasok_2017osz.pdf | házi feladatok megoldással]] | |||
* 2015: [https://drive.google.com/folderview?id=0B2oX_kNALMA3dHdJNDZtTEdSZFk&usp=sharing házi feladatok megoldással] | * 2015: [https://drive.google.com/folderview?id=0B2oX_kNALMA3dHdJNDZtTEdSZFk&usp=sharing házi feladatok megoldással] | ||
* 2014: [[Média:FmSztoch_hf_2014.pdf | házi feladatok]] és [[Média:FmSztoch_hf_2014_mo_1.pdf | az 1-5. feladatok]], illetve a [[Média:FmSztoch_hf_2014_mo_2.pdf | 2-3. feladatok megoldásai]] | * 2014: [[Média:FmSztoch_hf_2014.pdf | házi feladatok]] és [[Média:FmSztoch_hf_2014_mo_1.pdf | az 1-5. feladatok]], illetve a [[Média:FmSztoch_hf_2014_mo_2.pdf | 2-3. feladatok megoldásai]] | ||
| 84. sor: | 92. sor: | ||
== Zárthelyi == | == Zárthelyi == | ||
* 2021: [[Media:sztochasztika_zh_2021_1zh.pdf|1.ZH]], [[Media:sztochasztika_potzh_2021_potzh.pdf|Pót 2.ZH]] | |||
* 2019: [[Media:VillamosMSc_Sztoch_ZH1_megoldasok_2019osz.pdf|1.ZH megoldásokkal]],[[Media:VillamosMSc_Sztoch_ZH2_megoldasok_2019osz.pdf|2.ZH megoldásokkal]] | |||
* 2018: [[Media:VillamosMSc_Sztoch_ZH1_2018osz.pdf|1.ZH]] és [[Media:VillamosMSc_Sztoch_ZH1_megoldasok_2018osz.pdf| megoldása]], [[Media:VillamosMSc_Sztoch_ZH2_2018osz.pdf| 2. ZH]] és [[Media:VillamosMSc_Sztoch_ZH2_megoldasok_2018osz.pdf| megoldása]] | |||
* 2017: [[Média:Sztoch_ZH1_megoldasok_2017osz.pdf|1.ZH megoldásokkal]],[[Media:sztoch_ZH2_megoldasok_2017osz.pdf|2.megoldásokkal]] | |||
* 2015: [[Media:Sztoch_ZH1_2015osz.pdf|1.ZH A és B csoport]],[[Media:Sztoch_ZH2_2015osz.pdf|2.ZH A és B csoport]],[[Media:Sztoch_ZH2_megoldasok_2015osz.pdf|2.ZH A és B csoport megoldások]] | * 2015: [[Media:Sztoch_ZH1_2015osz.pdf|1.ZH A és B csoport]],[[Media:Sztoch_ZH2_2015osz.pdf|2.ZH A és B csoport]],[[Media:Sztoch_ZH2_megoldasok_2015osz.pdf|2.ZH A és B csoport megoldások]] | ||
* 2014: [[Média:FmSztoch_zh_2014.pdf | zh]] és [[Média:FmSztoch_zh_2014_mo.pdf | megoldása]]; [[Média:FmSztoch_zh_2014_pot.pdf | pótzh]] és [[Média:FmSztoch_zh_2014_pot_mo.pdf | megoldása]]; [[Média:FmSztoch_zh_2014_potpot.pdf | pótpótzh]] és [[Média:FmSztoch_zh_2014_potpot_mo.pdf | megoldása]] | * 2014: [[Média:FmSztoch_zh_2014.pdf | zh]] és [[Média:FmSztoch_zh_2014_mo.pdf | megoldása]]; [[Média:FmSztoch_zh_2014_pot.pdf | pótzh]] és [[Média:FmSztoch_zh_2014_pot_mo.pdf | megoldása]]; [[Média:FmSztoch_zh_2014_potpot.pdf | pótpótzh]] és [[Média:FmSztoch_zh_2014_potpot_mo.pdf | megoldása]] | ||