Matematika A3 villamosmérnököknek

A VIK Wikiből
A lap korábbi változatát látod, amilyen David14 (vitalap | szerkesztései) 2014. június 10., 18:52-kor történt szerkesztése után volt. (→‎Írásbeli vizsga)
Matematika A3
villamosmérnököknek
Általános infók
Szak
villany
Kredit
4
Ajánlott félév
3
Keresztfélév
van
Tanszék
Algebra Tanszék
Követelmények
KisZH
nincs
NagyZH
2 db
Házi feladat
nincs
Vizsga
írásbeli és opcionális szóbeli
Elérhetőségek
Levlista
matek3@sch.bme.hu

A tárgy villamosmérnöki viszonylatban rendkívül fontos. Legfőképpen a vektoranalízis témakört célszerű alaposan megtanulni, ugyanis az Elektromágneses terek alapjai című tárgy erőteljesen épít erre. A tárgy épít a Matematika A1 - Analízis és a Matematika A2 - Vektorfüggvények tárgyakra, így ajánlott a deriválási és integrálási készségeinket napra készen tartani a tárgy hallgatása során.

A Matematika A3 tananyaga három fő részből áll (részletes tematika lentebb):

  • Differenciálegyenletek
  • Komplex függvénytan
  • Vektoranalízis

Az első zárthelyi a differenciálegyenletekből, a második zárthelyi pedig a komplex függvénytanból van általában. A vektoranalízist gyakran csak a vizsgában kérik számon, de ott 50%-os súllyal.

Követelmények

  • Előkövetelmény: A Matematika A2a - Vektorfüggvények című tárgy teljesítése.
  • Jelenlét: A gyakorlatok 70%-án kötelező részt venni.
  • NagyZH: A félév során két darab nagy zárthelyit kell teljesíteni. Mindkettő általában 6 darab 10 pontos feladatból áll, melyek egyike elméleti igaz-hamis kérdéseket tartalmaz. Mindkettőn 30%-ot kell elérni az aláírás megszerzéséhez. A félév során mindkét ZH egyszer pótolható, továbbá kizárólag az egyikből írható pótpót-zárthelyi is a félév végén.
  • Vizsga: A tárgyból kötelező írásbeli vizsga van, a szóbeli vizsga pedig az elért pontszámtól függően lehet kötelező vagy opcionális. Az írásbeli felépítése megegyezik az évközi zárthelyikével. A vizsga anyaga általában 50%-ban a második zárthelyi után vett anyagból, 30%-ban a második zárthelyi anyagából, 20%-ban pedig az első zárthelyi anyagából tevődik össze. Itt azonban már legalább 40%-ot kell teljesíteni! 24 pont fölött vizsgapontot (VP) számítanak a következőképpen:
    • Ha a 2 zárthelyi átlagpontszáma (ZH) jobb a vizsgadolgozaténál (VD), akkor: VP = ( ZH + VD ) / 2
    • Ha a 2 zárthelyi átlagpontszáma rosszabb a vizsgadolgozaténál, akkor: VP = VD
24 és 33 pont között kötelező szóbelizni, 33 és 42 pont között megajánlott kettes kérhető, 42 pont felett pedig megajánlott hármas. A jó és jeles érdemjegyekért mindenképpen szóbelizni kell a sikeres írásbeli után. A szóbeli vizsga a dolgozatok megtekintését követően zajlik le.

Segédanyagok

Elméleti összefoglalók

Gyakorló feladatok

Egyéb segédanyagok

Első zárthelyi

Rendes ZH

Pót ZH

Második zárthelyi

Rendes ZH

Pót ZH

Vizsgák

Írásbeli vizsga

Szóbeli vizsga

  • 2012/13 őszi félévében Dr. Pitrik József előadó által kiadott szóbeli tételsor. Mivel ez teljesen lefedi az előadások anyagait, így a többi előadó is 90%-ban ezeket kérdezi.
  • 2013/14 őszi félévében Molnár Zoltán (MoZo) által kiadott szóbeli segédanyag. Ez az anyag elég a szóbeli négyes-ötösért, de Mozo megnézi a zárthelyik eredményeit és a vizsga eredményét is. Ha mindhárom jó könnyebben ad jó jegyet, ha rossz nehezebben.
  • Vizsgakérdések az elégségesért - A kettesért kiadott tételsor teljes kidolgozása. Leginkább egy nagy összefoglaló, ahol minden fontosabb dolog egy helyen van, tehát nem a megértést segíti, hanem a felkészülést, de azért hasznos lehet.

Témakörök

link=‎ Itt még van valami tennivaló ezzel az oldallal. Valaki csinálja majd meg, ne maradjon így!

Részletekért nézd meg a Vitalapot


Ez a rész erőteljes átnézésre, válogatásra, aktualizálásra és kiegészítésre szorul!!!

  1. Differenciálegyenletek: osztályozások és definíciók
  2. Elsőrendű differenciálegyenletek
  3. Magasabbrendű differenciálegyenletek
  4. Differenciálegyenlet-rendszerek
  5. Komplex számok
  6. Komplex függvények
  7. Cauchy integráltételek
  8. Laurent-sorfejtés
  9. Vonalmenti integrálás
  10. Divergencia, rotáció
  11. Felületi integrál
  12. Integrálátalakító tételek: Stokes és Gauss-Osztrogradszkij
  13. Vektoranalízis összefoglalása

Tippek

  • A félév nagy részében jól használható a feladatok megoldásának ellenőrzésében a Wolfram alpha, amely azonban nem sokat ér, ha a megoldás menetét nem értjük. A számonkérések esetén a puszta eredmény közléséért általában 0 pont jár.
  • Érdemes minél többet gyakorolni, mert a ZH/vizsga példák nagyon sablonosak. Legfőképpen a differenciálegyenletekre igaz, hogy leadnak a félév során ~10 alaptípust, melyeknek megoldása meglehetősen mechanikus. Ha megoldasz minden lehetséges típusból legalább egy példát, akkor nem érhet nagy meglepetés.
  • Érdemes minél előbb elmenni vizsgázni, mert általában erőteljesen nehezedik az írásbeli - "Elfogynak a könnyű feladatok".
  • Az írásbelin általában nagyrészt a 2. ZH utáni anyagrészből kérdeznek. Ez nagyjából 4-5 hét anyaga, tehát megéri alaposan begyakorolni ezeket a témaköröket, mert jó eséllyel három, de akár négy feladat is kikerülhet közülük.
  • Ha a számolási feladatok jól mennek, akkor érdemes némi időt rászánni az elméletre is és megpróbálni a szóbelit a jobb jegyért. A szóbelin általában kedvesek és hacsak nem vagy irtózatosan sügér az elméletből, akkor nemigazán buktatnak. Egyszóval megér egy próbát.


Bevezetők
1. félév
2. félév
3. félév
4. félév
5. félév
6. félév
7. félév