„Alkalmazott mesterséges intelligencia” változatai közötti eltérés
A VIK Wikiből
Üres levlistasablon eltávolítása, ZH-k rendezése és hozzáadása, vizsgák rendezése |
→Előadás: Óra anyagának hozzáadása |
||
63. sor: | 63. sor: | ||
* 2. hét: [[Media:MIBprof-VIMIBB01-20230911-2A-KeresesVakon_KvizNelkul.pdf | neminformált (vak) keresési stratégiák]]: BFS, Dijkstra (uniform-cost), DFS (DLDFS, IDS), kétirányú; [[Media:MIBprof-VIMIBB01-20230911-2B-KeresesHeurisztikusan_KvizNelkul.pdf | informált (heurisztikus) keresési stratégiák]]: optimista, greedy, A* | * 2. hét: [[Media:MIBprof-VIMIBB01-20230911-2A-KeresesVakon_KvizNelkul.pdf | neminformált (vak) keresési stratégiák]]: BFS, Dijkstra (uniform-cost), DFS (DLDFS, IDS), kétirányú; [[Media:MIBprof-VIMIBB01-20230911-2B-KeresesHeurisztikusan_KvizNelkul.pdf | informált (heurisztikus) keresési stratégiák]]: optimista, greedy, A* | ||
* [[Media:MIBprof-VIMIBB01-20230918-3-Logika1.pdf | 3. hét]]: logikai következtetésen alapuló szabályalapú rendszerek: szintaxis, általános következtetési szabályok (igazságtáblázat, előrefele és hátrafele következtetés), működési ciklus, intelligens logikai ágens, ... | * [[Media:MIBprof-VIMIBB01-20230918-3-Logika1.pdf | 3. hét]]: logikai következtetésen alapuló szabályalapú rendszerek: szintaxis, általános következtetési szabályok (igazságtáblázat, előrefele és hátrafele következtetés), működési ciklus, intelligens logikai ágens, ... | ||
* 4. hét: [[Media:MIBprof-VIMIBB01-20230925-4HaziFealadat-BizonytalanTudas.pdf | házi feladat az órára]]: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; [[Media:MIBprof-VIMIBB01-20230925-4A-ValoszinusegiHalokKvizNelkul.pdf | valószínűségi hálók]]: | * 4. hét: [[Media:MIBprof-VIMIBB01-20230925-4HaziFealadat-BizonytalanTudas.pdf | házi feladat az órára]]: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; [[Media:MIBprof-VIMIBB01-20230925-4A-ValoszinusegiHalokKvizNelkul.pdf | valószínűségi hálók]]: valószínűségérték, haszna és jellemzői, Bayes-tétel összegzése rejtett változókra, következtetés felsorolással, irreleváns változók eliminálása, komplexitástípusok (lekérdezések); [[Media:MIBprof-VIMIBB01-20230925-4B5A-EgyszeruDontesDontesiFaKvizNelkul.pdf | döntési fák]]: triviális és igazi fa | ||
* 5. hét: ''szünet'' | * 5. hét: ''szünet'' | ||
* 6. hét: döntési fák, folytatás: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); [[Media:MIBprof-VIMIBB01-20231009-5-6-Neuralis-halokKvizNelkul.pdf | neurális hálók]]: tanítás típusai ((un)supervised, half supervised, reinforcement learning, gradiens alapú és annak hibája), perceptron (bátorsági faktor) | * 6. hét: döntési fák, folytatás: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); [[Media:MIBprof-VIMIBB01-20231009-5-6-Neuralis-halokKvizNelkul.pdf | neurális hálók]]: tanítás típusai ((un)supervised, half supervised, reinforcement learning, gradiens alapú és annak hibája), perceptron (bátorsági faktor) |
A lap 2023. október 24., 19:00-kori változata
A tantárgy fő célkitűzése a mesterséges intelligencia területének rövid, ám igényes, elsősorban alkalmazásra irányuló bemutatása. A bemutatás lépései: az intelligens viselkedés mibenléte, fontossága alkalmazásának célja, a számítási modellekkel való kifejezésének problémaköre, a mesterséges intelligencia alapvető formális és heurisztikus módszereinek bemutatása, alkalmazásának lehetőségei és korlátai a gyakorlati megvalósítás módszerei és problémái.
Követelmények
Előtanulmányi rend
- A tárgy felvételéhez az Algoritmusok és gráfok és a Programozás alapjai előzetes vagy egyidejű felvétele szükséges.
A szorgalmi időszakban
- Az előadásokon vannak kvízek (általában 3-5 db előadásonként), és négy helyes megoldásért jár egy jutalompont.
- A laboron megjelenés kötelező. A 6 laborból 4 teljesítése kötelező, de a megajánlott jegyhez mind a 6 labor teljesítése elvárt. A laborok kéthetente vannak és 4 óra hosszúak lesznek. Nem vészesek, minimális programozói tudás szükséges hozzá. Ha valaki a minimumkövetelményeken túl teljesít laborokat, akkor darabonként +5 pont jár értük. Főleg Pythonban, Google Colabolatory használatával kell dolgozni.
- Mint néhány más tárgynál, itt is meglehet csinálni a laborokat otthon, és csak kivárni, hogy be tudd mutatni.
- A ZH legalább elégséges szintű (40%) teljesítése. Maximum 30 pontos, de az előadáson szerzett jutalompont beszámítanak, még az elégéses szint eléréséhez is.
- Megajánlott jegy: van. Mind a 6 labor teljesítése elvárt és még ZH pontszám + plusz pontok >= 26 is egy követelmény.
- Pótlási lehetőségek:
- A ZH szorgalmi időszakban egyszer pótolható, pót-pót ZH már nincs.
- A laborok nem pótolhatóak, de a laborvezetőtől függően lehet késedelmesen beadni (ezzel kapcsolatban érdemes rákérdezni az adott labor laborvezetőjénél).
A vizsgaidőszakban
- A vizsga 60 pontos.
- Legalább elégséges (40%) teljesítése szükséges.
Félévvégi jegy
- Pontszámítás: Viszga(max. 60) + Zh(max. 30) + NemKötelezőLaborok(max. 10) + ElőadásJutalompontok.
- Ponthatárok:
Pont Jegy 0,0 - 40,0 1 40,0 - 49,0 2 49,5 - 64,0 3 64,5 - 79.5 4 80,0 + 5
Tematika
Előadás
A prezentációk a Moodle-re vannak feltöltve.
- 1. hét: követelmények, bevezetés
- 2. hét: neminformált (vak) keresési stratégiák: BFS, Dijkstra (uniform-cost), DFS (DLDFS, IDS), kétirányú; informált (heurisztikus) keresési stratégiák: optimista, greedy, A*
- 3. hét: logikai következtetésen alapuló szabályalapú rendszerek: szintaxis, általános következtetési szabályok (igazságtáblázat, előrefele és hátrafele következtetés), működési ciklus, intelligens logikai ágens, ...
- 4. hét: házi feladat az órára: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; valószínűségi hálók: valószínűségérték, haszna és jellemzői, Bayes-tétel összegzése rejtett változókra, következtetés felsorolással, irreleváns változók eliminálása, komplexitástípusok (lekérdezések); döntési fák: triviális és igazi fa
- 5. hét: szünet
- 6. hét: döntési fák, folytatás: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); neurális hálók: tanítás típusai ((un)supervised, half supervised, reinforcement learning, gradiens alapú és annak hibája), perceptron (bátorsági faktor)
- 7. hét: neurális hálók, folytatás: szigmoid neuron: hibavisszaterjesztés; MLP: túltanulás és annak elkerülése (dimenzióredukció, konvolúciós rétegek, dropout, augmentáció, LSTM, transzfertanulás); gyakorlás a ZH-ra
- 6. előadás
- 7. előadás
- 8. előadás
- 9.1 előadás, 9.2 előadás
- 10. előadás
- 11. előadás
- 12. előadás
- 13. előadás Gyakorlóóra
Labor
A linkek a Teams-re vannak feltöltve.
- 1. hét: elmaradt
- 2. hét: útkeresések a 11. kerület térképén: BFS, DFS, Dijkstra (uniform-cost search), greedy, A*
- 3. hét: szünet
- 4. hét: autós fáradtságérzékelő rendszer: valószínűségi változók egy Bayes-hálóban, döntési háló (mintából tanulás)
- 5. hét: szünet
- 2. labor - Logika: egyedibb labor, ahol virtuális gépen kell dolgozni CLIPS-ben
- A mellékelt segédanyagokat nem kell tudni, de a "labor bevezetőt" érdemes megnézni, mert egyébként nem valószínű, hogy a labor végéig befejezi az ember.
- 5. labor - Neurális hálók: Google Colab jegyzőkönyves labor
- 6. labor - Natural Language Processing: hagyományos (Word) jegyzőkönyves labor
- Minimális munkát igényel a labor alkalma előtt, de valójában a "legegyszerűbb" labor.
Segédanyagok
ZH
- 2022. ősz
- 2021. ősz
- 2020. ősz
- 2019. ősz
Vizsga
- 2021. ősz
- 1. vizsga
- 2019. ősz
1. félév | |
---|---|
2. félév | |
3. félév | |
4. félév | |
5. félév | |
6. félév |