„Elektronika alapjai” változatai közötti eltérés

A VIK Wikiből
→‎Gyakorlatok: Óra anyagának hozzádaása
→‎Előadások: Óra anyagának hozzáadása
39. sor: 39. sor:
* [[Media:elektro_EA03_20240226_CMOS-alapok.pdf | 3. hét]]: (C)MOS-tranzisztor: működése, kapcsolási rajz; digitális logika: Boole-algebra, swing, rail, transzferkarakterisztika, komparálási feszültség, zaj- / zavarvédettség, jelregeneráció, robosztusság; CMOS-áramkörök, -inverter, -kapu (PUN, PDN): NOR, NAND, komplex; transzferkapu, clocked CMOS; -tárolók: latch, flip-flop
* [[Media:elektro_EA03_20240226_CMOS-alapok.pdf | 3. hét]]: (C)MOS-tranzisztor: működése, kapcsolási rajz; digitális logika: Boole-algebra, swing, rail, transzferkarakterisztika, komparálási feszültség, zaj- / zavarvédettség, jelregeneráció, robosztusság; CMOS-áramkörök, -inverter, -kapu (PUN, PDN): NOR, NAND, komplex; transzferkapu, clocked CMOS; -tárolók: latch, flip-flop
* 4. hét: az előző hét folytatása: tárolás, D-latch és -flipflop; [[Media:elektro_EA04_20240304_CMOS-digit-tervezes.pdf | CMOS-áramkörök késleltetése és fogyasztása]]: CMOS-inverter (késleltetés, terhelés), teljesítmény, energia, statikus / dinamikus fogyasztás (töltéspumpálás), PDP, dynamic voltage frequency scaling, energiatakarékossági módok; digitálisrendszer-tervezés: szinkron szekvenciális logika, design flow, VHDL, SystemVerilog, logikai verifikáció és szintézis, ((lépések: floorplan, power plan, place, route, pad-ring)), post-layout szimuláció
* 4. hét: az előző hét folytatása: tárolás, D-latch és -flipflop; [[Media:elektro_EA04_20240304_CMOS-digit-tervezes.pdf | CMOS-áramkörök késleltetése és fogyasztása]]: CMOS-inverter (késleltetés, terhelés), teljesítmény, energia, statikus / dinamikus fogyasztás (töltéspumpálás), PDP, dynamic voltage frequency scaling, energiatakarékossági módok; digitálisrendszer-tervezés: szinkron szekvenciális logika, design flow, VHDL, SystemVerilog, logikai verifikáció és szintézis, ((lépések: floorplan, power plan, place, route, pad-ring)), post-layout szimuláció
* [[Media:elektro_EA05_20240311_memoriak.pdf | 5. hét]]: memóriák: alapfogalmak, felépítése (word line, bit line), bank; SRAM: felépítése; (embedded) DRAM: cella, írás, olvasás, frissítés (burst refresh, distributed (hidden) refresh); CAM: search data register, elemi cella; MROM: pszeudo-NMOS-kapu, NOR- / NAND-kapu, OTP ROM; (((anti)fuse, PLICE)); küszöbfeszültség, (E)EPROM, flash EEPROM (SLC / MLC, NOR / NAND); ((SONOS, VNAND, NVRAM, FERAM, MRAM))


* [[Media:EA05-memoriak.pdf | 5. előadás - Memóriák]]
* [[Media:EA06-analog-alapok.pdf | 6. előadás - Analóg jelformálás és erősítés]]
* [[Media:EA06-analog-alapok.pdf | 6. előadás - Analóg jelformálás és erősítés]]
* [[Media:EA07-opamp-osc.pdf | 7. előadás - Jelfeldolgozás műveleti erősítővel]]
* [[Media:EA07-opamp-osc.pdf | 7. előadás - Jelfeldolgozás műveleti erősítővel]]

A lap 2024. március 11., 15:47-kori változata

Elektronika alapjai
Tárgykód
VIEEBB01
Általános infók
Szak
üzemmérnök
Kredit
5
Ajánlott félév
4
Keresztfélév
N/A
Tanszék
EET
Követelmények
Labor
10 db
KisZH
nincs
NagyZH
1 db
Házi feladat
nincs
Vizsga
írásbeli
Elérhetőségek

A tantárgy célkitűzése, hogy megismertesse a hallgatókat az elektronika és általuk használt eszközök megvalósítási technológiáinak alapjaival. Cél továbbá annak bemutatása, hogy a modern mikroelektronika milyen lehetőségeket biztosít a számítástechnika számára, melyek a fizikai megvalósítás korlátai, és a fejlődés trendjei.

Követelmények

A szorgalmi időszakban

  • A ZH legalább elégséges szintű (40%) teljesítése.
  • A gyakorlatokon legalább 70%-os részvétel kell legyen az aláírás meglétéhez.
  • Megajánlott jegy: Fakultatív házikkal lehet pontot szerezni.
  • Pótlási lehetőségek:
    • A ZH póthéten egyszer pótolható, pót-pót ZH már nincs.

A vizsgaidőszakban

  • A vizsga legalább elégséges (40%) teljesítése szükséges.

Félévvégi jegy

  • A félévvégi jegyet a vizsgán elért eredmény adja.

Tematika

A kari Moodle-ben fent van minden, ami kell a tárgyhoz, legyen az gyakorlat vagy előadás.

Előadások

  • 1. hét: követelmények; bevezetés: mikroelektronika, Moore-törvény, szilícium (wafer), fotolitográfia; kapcsolási rajz: föld; passzív alkatrészek: Kirchhoff-törvények, ellenállások (soros / párhuzamos kapcsolás), kondenzátor, tekercs
  • 2. hét: PCB, through-hole, SMD; ellenállások, (elektrolit) kondenzátorok; vezetők, félvezetők, szigetelők; töltéshordozók (adalékolás); dióda (LED): tulajdonságai, karakterisztikái, számítások, színek, fényporok
  • 3. hét: (C)MOS-tranzisztor: működése, kapcsolási rajz; digitális logika: Boole-algebra, swing, rail, transzferkarakterisztika, komparálási feszültség, zaj- / zavarvédettség, jelregeneráció, robosztusság; CMOS-áramkörök, -inverter, -kapu (PUN, PDN): NOR, NAND, komplex; transzferkapu, clocked CMOS; -tárolók: latch, flip-flop
  • 4. hét: az előző hét folytatása: tárolás, D-latch és -flipflop; CMOS-áramkörök késleltetése és fogyasztása: CMOS-inverter (késleltetés, terhelés), teljesítmény, energia, statikus / dinamikus fogyasztás (töltéspumpálás), PDP, dynamic voltage frequency scaling, energiatakarékossági módok; digitálisrendszer-tervezés: szinkron szekvenciális logika, design flow, VHDL, SystemVerilog, logikai verifikáció és szintézis, ((lépések: floorplan, power plan, place, route, pad-ring)), post-layout szimuláció
  • 5. hét: memóriák: alapfogalmak, felépítése (word line, bit line), bank; SRAM: felépítése; (embedded) DRAM: cella, írás, olvasás, frissítés (burst refresh, distributed (hidden) refresh); CAM: search data register, elemi cella; MROM: pszeudo-NMOS-kapu, NOR- / NAND-kapu, OTP ROM; (((anti)fuse, PLICE)); küszöbfeszültség, (E)EPROM, flash EEPROM (SLC / MLC, NOR / NAND); ((SONOS, VNAND, NVRAM, FERAM, MRAM))

Gyakorlatok

  • 1. hét (feladatok, prezentáció): ellenállás: Ohm-törvény, párhuzamos / soros kapcsolás, feszültségosztó és -mérő (két-, három- és négyvezetékes), szuperpozíció tétele
  • 2. hét (feladatok, prezentáció): kapacitás: Kirchhoff-törvény, RC késleltető hálózat (be- és kikapcsolási időfüggvény), időállandó, logikai kapu, PoR, munka
  • 3. hét (feladatok, prezentáció): dióda: feszültség és áramerősség meghatározása grafikon leolvasásával, számítással (kapcsolási rajz készítése), mérnöki közelítéssel; kapcsolóáramkör (charlieplexing); meghajtás, dióda és rendszer hatásfoka
  • 4. hét (feladatok, prezentáció): CMOS-áramkör logikai függvényének megállapítása (online igazságtáblázat, De Morgan-azonosságok), áramkör áttervezése logikai függvény alapján, transzferkapu-áramkör logikai függvényének megállapítása, latch átalakítása, fogyasztás kiszámítása, NAND-kapu kimeneti valószínűségének kiszámítása, ripple-carry adder késleltetésének kiszámítása

ZH

GitEgylet segédanyagok:

Vizsga

Hasonló a ZH-hoz, a Moodle tesztekből érdemes készülni.

Tippek

  • Érdemes a megajánlott jegyre hajtani és minden Moodle tesztet megcsinálni.


1. félév
2. félév
3. félév
4. félév
5. félév
6. félév