„Jelek és jelfeldolgozás” változatai közötti eltérés

A VIK Wikiből
Csia Klaudia Kitti (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
→‎Tematika: Órák anyagának hozzáadása
 
(20 közbenső módosítás, amit 5 másik szerkesztő végzett, nincs mutatva)
13. sor: 13. sor:
|vizsga=írásbeli
|vizsga=írásbeli
|tad=https://portal.vik.bme.hu/kepzes/targyak/VIHVBB01/
|tad=https://portal.vik.bme.hu/kepzes/targyak/VIHVBB01/
|targyhonlap=N/A
|targyhonlap=
|levlista=  }}
}}
 
A tárgy célkitűzése, hogy a hallgatók megismerkedjenek a jelek – mint fizikai információhordozók – fogalmával, tulajdonságaikkal, leírási módjaikkal, digitális eszközökkel történő feldolgozásuk lehetőségeivel. A tantárgy bemutatja az analóg és digitális jelek matematikai kezelésének és feldolgozásának néhány lehetőségét, így a jelek és rendszerek idő- és frekvenciatartománybeli leírását. A hallgatók megismerkedhetnek a legfontosabb mérőjelekkel és azok alkalmazhatóságával.
{{TODO BProf}}
 
A tárgy célkitűzése, hogy a hallgatók megismerkedjenek a jelek – mint fizikai információhordozók – fogalmával, tulajdonságaikkal, leírási módjaikkal, digitális eszközökkel történő feldolgozásuk lehetőségeivel.
 
A tantárgy bemutatja az analóg és digitális jelek matematikai kezelésének és feldolgozásának néhány lehetőségét, így a jelek és rendszerek idő- és frekvenciatartománybeli leírását. A hallgatók megismerkedhetnek a legfontosabb mérőjelekkel és azok alkalmazhatóságával.
 


== Követelmények ==
== Követelmények ==
54. sor: 48. sor:


=== Előadás ===
=== Előadás ===
* '''2020. tavasz'''
* [[Média:Ea1.pdf|1. hét]]: jelek: FI / DI, FÉ / DÉ, determinisztikus / sztochasztikus; rendszerek: MIMO / SISO, (nem)lineáris, (időin)variáns, (a)kauzális, stabilis / labilis, LTI; hálózatok: Kirchhoff-, jelfolyam-; jelfeldolgozás: szintézis, analízis, transzformációk, tömörítési eljárások, kódolás
** 1. előadás: Jelfeldolgozás alapjai
* [[Média:Jelek ea2 20240221.pdf|2. hét]]: állapotváltozós leírás: SISO, folytonos / diszkrét idejű; jelfolyamhálózatok: karakterisztikák (forrás, nyelő, erősítő, FI-integrátor, DI-késleltető); összekapcsolási kényszerek: összegző, elágazás, egyszerű; FI-válasz numerikus közelítése: előrelépő / hátralépő Euler-séma
** 2. előadás: MATLAB ismertetése
* [[Média:Ea3.pdf|3. hét]]: vizsgálójelek FI-rendszerek analízisében: speciális jelek (egységugrás, (Dirac)-impulzus), általánosított derivált, impulzusválasz, konvolúciótétel és annak tulajdonságai (kommutatív, disztributív, asszociatív), rendszerjellemzők (kauzális, stabilis)
** 3. előadás: Jelek osztályozása
* [[Média:Ea4.pdf|4. hét]]: vizsgálójelek DI-rendszerek analízisében: DI-jelek (egységugrás, (Dirac)-impulzus, exponenciális és szinuszos függvény), műveletek (eltolás, levágás / ablakozás), impulzusválasz (LTI, FIR, GV-stabilitás), ugrásválasz, rendszerjellemzők (kauzális, stabilis)
** 4. előadás: Hálózatelmélet alapjai
* 5. hét: [[Média:Ea5.pdf|rendszeregyenlet]]; [[Média:Ea6.pdf|állandósult válasz]]: szinuszos válasz és annak komplex leírása (Euler-reláció), műveletek fazorokkal (összeadás, szorzás, késleltetés); átviteli karakterisztika
** 5. előadás: Peródikus jelek írása - Fourier sor
* 6. hét: előző hét folytatása: ...
** 6. előadás: Rendszerek leírása blokkvázlattal, jelfolyam hálózattal
 
** 7. előadás: Átviteli karakterisztika
* 7. hét: [[Média:Ea7.pdf|átviteli karakterisztika előállítása RE-ből, DI Fourier-sor]]; [[Média:Jelek ea9 20240403.pdf|általános periodikus válasz, periodikus válasz Fourier-sora]]
** 8. előadás: Analóg jelek diszkretizálása, mintavételezés, kvantálás
* 8. hét: gyakorlás a ZH-ra
** 9. előadás: Diszkrét idejű rendszerek felépítése
* [[Média:Ea9.pdf|9. előadás - Periodikus válasz, Parseval-tétel, mérnöki valós alak, periodikus válasz Fourier-sora]]
** 10. előadás: DFT/DCT tulajdonságai
* [[Média:Jelek ea10 20220524.pdf|10. előadás - Válasz spektrális előállítása, jel- és rendszer sávszélessége, szűrők]]
** 11. előadás: Digitális szűrők
* [[Média:Jelek ea11 20220524.pdf|11. előadás - Torzításmentes jelátvitel, FIR, MÁ, MF]]
** 12. előadás: Hang- és képfeldolgozás tipikus feladatai
* [[Média:Jelek ea12 20220524.pdf|12. előadás - Mintavételezés, jelrekonstrukció, mintavételezett jelek spektruma]]
** 13. előadás: Analóg rendszerek diszkrét szimulációja


=== Gyakorlat ===
=== Gyakorlat ===
* '''2020. tavasz'''
* [[Média:Jjf gyak1.pdf|1. hét]]: műveletek komplex számokkal, mértani sor összegzése, függvények deriváltja és intergáltja, mátrixok sajátértéke
** 1. gyakorlat: Kirchoff, párhuzamos/soros kapcsolás
* [[Média:Jjf gyakorlat2.pdf|2. hét]]: állapotváltozós normálalak (ÁVLNA), előre- / hátralépő Euler-séma ([[Média:Jelek 20240222 rc tag.m.zip|MATLAB]]), jelfolyamhálózati rendszer állapotváltozós leírásának normálalakja
** 2. gyakorlat: MATLAB bevezetés
* [[Média:Jjf gyakorlat3.pdf|3. hét]]: FI-rendszerek: GV-stabilitás meghatározása impulzusválaszra, jellemzés gerjesztés-válasz kapcsolat alapján
** 3. gyakorlat: Diszkrét/Analóg jelek
* 4. hét: az előző hét folytatása: FI-rendszerek: impulzusválasz kiszámítása ugrásválasz alapján és fordítva, rendszer válaszának kiszámítása gerjesztésekre impulzusválasz alapján; [[Média:Jjf gyakorlat5.pdf|DI-rendszerek]]: rendszeregyenlet és állapotváltozós leírás megadása hálózati rajz alapján
** 4. gyakorlat: Egyszerű egyenáramú áramkörök vizsgálata
** 5. gyakorlat: Négyszög jel Fourier sora
** 6. gyakorlat: Jelátvitel csavart érpáron, csillapítás
** 7. gyakorlat: Bode-diagramm rajzolása, értelmezése
** 8. gyakorlat: Matlabos gyakorlat
** 9. gyakorlat: A z-traszformáció alkalmazása
** 10. gyakorlat: Egyszerű jelek FFT-je
** 11. gyakorlat: Szűrőtervezés MATLAB-ban
** 12. gyakorlat: Formátumok vizsgálata
** 13. gyakorlat: Jelfeldolgozási folyamat tervezése
** Pótalkalom


== Segédanyagok ==
* 5. hét: az előző hét folytatása: impulzusválasz kiszámítása ugrásválasz alapján, válsz számítása konvolúcióval
TODO
* 6. hét: [[Média:Jjf gyakorlat6.pdf|DI-rendszerek analízise az időtartományban]]
* [[Média:Jjf gyakorlat7.pdf|9-10. gyakorlat: Komplex alak, mérnöki valós alak, a jel teljesítménye]]
* [[Média:Jjf gyakorlat8.pdf|11. gyakorlat: Fourier-transzformált]]
* [[Média:Jjf gyakorlat9.pdf|12. gyakorlat: ...]]


== Házi feladat ==
== ZH ==
TODO
*[[Jelek és jelfeldolgozás kvíz|Kvíz]]


== ZH ==
*2021. tavasz
TODO
**[[Média:Probazh.pdf|Mintafeladatok]]
*2022. tavasz
**[[Média:Minta2022.pdf|Mintafeladatok]] (megegyezik a 2023-assal)
**[[Média:JelekHelp.pdf|Fontos fogalmak és képletek gyűjteménye]] by [[GitEgylet]]


== Vizsga ==
== Vizsga ==
TODO
*[[Jelek és jelfeldolgozás kvíz|Kvíz]]


== Tippek ==
*2022. tavasz
TODO
**[[Média:Vizsga minta2022.pdf|Mintafeladatok]]
**[[Média:SendHelp.pdf|Mintafeladatok megoldásokkal]] by [[GitEgylet]]


== Kedvcsináló ==
== Ajánlott irodalom ==
TODO
*[[Média:Jelesjelf irodalom 20230302.pdf| Fodor György: Jelek és rendszerek (Műegyetemi Kiadó, 2006)]]




{{Lábléc_-_Üzemmérnök-informatikus_alapszak}}
{{Lábléc_-_Üzemmérnök-informatikus_alapszak}}

A lap jelenlegi, 2024. június 26., 17:02-kori változata

Jelek és jelfeldolgozás
Tárgykód
VIHVBB01
Általános infók
Szak
üzemmérnök
Kredit
5
Ajánlott félév
4
Keresztfélév
N/A
Tanszék
HVT
Követelmények
KisZH
nincs
NagyZH
1 db
Házi feladat
nincs
Vizsga
írásbeli
Elérhetőségek

A tárgy célkitűzése, hogy a hallgatók megismerkedjenek a jelek – mint fizikai információhordozók – fogalmával, tulajdonságaikkal, leírási módjaikkal, digitális eszközökkel történő feldolgozásuk lehetőségeivel. A tantárgy bemutatja az analóg és digitális jelek matematikai kezelésének és feldolgozásának néhány lehetőségét, így a jelek és rendszerek idő- és frekvenciatartománybeli leírását. A hallgatók megismerkedhetnek a legfontosabb mérőjelekkel és azok alkalmazhatóságával.

Követelmények

A szorgalmi időszakban

  • A ZH legalább elégséges szintű (40%) teljesítése.
  • A gyakorlatokon való részvétel erősen ajánlott.
  • Pótlási lehetőségek:
    • A ZH póthéten egyszer pótolható, pót-pót ZH már nincs.

A vizsgaidőszakban

  • A vizsga legalább elégséges (40%) teljesítése szükséges.

Félévvégi jegy

  • A félévvégi jegyet a vizsgán elért eredmény adja.
  • Ponthatárok:
Pont Jegy
0 - 40 1
41 - 55 2
56 - 70 3
71 - 85 4
86 - 100 5

Tematika

Előadás

  • 1. hét: jelek: FI / DI, FÉ / DÉ, determinisztikus / sztochasztikus; rendszerek: MIMO / SISO, (nem)lineáris, (időin)variáns, (a)kauzális, stabilis / labilis, LTI; hálózatok: Kirchhoff-, jelfolyam-; jelfeldolgozás: szintézis, analízis, transzformációk, tömörítési eljárások, kódolás
  • 2. hét: állapotváltozós leírás: SISO, folytonos / diszkrét idejű; jelfolyamhálózatok: karakterisztikák (forrás, nyelő, erősítő, FI-integrátor, DI-késleltető); összekapcsolási kényszerek: összegző, elágazás, egyszerű; FI-válasz numerikus közelítése: előrelépő / hátralépő Euler-séma
  • 3. hét: vizsgálójelek FI-rendszerek analízisében: speciális jelek (egységugrás, (Dirac)-impulzus), általánosított derivált, impulzusválasz, konvolúciótétel és annak tulajdonságai (kommutatív, disztributív, asszociatív), rendszerjellemzők (kauzális, stabilis)
  • 4. hét: vizsgálójelek DI-rendszerek analízisében: DI-jelek (egységugrás, (Dirac)-impulzus, exponenciális és szinuszos függvény), műveletek (eltolás, levágás / ablakozás), impulzusválasz (LTI, FIR, GV-stabilitás), ugrásválasz, rendszerjellemzők (kauzális, stabilis)
  • 5. hét: rendszeregyenlet; állandósult válasz: szinuszos válasz és annak komplex leírása (Euler-reláció), műveletek fazorokkal (összeadás, szorzás, késleltetés); átviteli karakterisztika
  • 6. hét: előző hét folytatása: ...

Gyakorlat

  • 1. hét: műveletek komplex számokkal, mértani sor összegzése, függvények deriváltja és intergáltja, mátrixok sajátértéke
  • 2. hét: állapotváltozós normálalak (ÁVLNA), előre- / hátralépő Euler-séma (MATLAB), jelfolyamhálózati rendszer állapotváltozós leírásának normálalakja
  • 3. hét: FI-rendszerek: GV-stabilitás meghatározása impulzusválaszra, jellemzés gerjesztés-válasz kapcsolat alapján
  • 4. hét: az előző hét folytatása: FI-rendszerek: impulzusválasz kiszámítása ugrásválasz alapján és fordítva, rendszer válaszának kiszámítása gerjesztésekre impulzusválasz alapján; DI-rendszerek: rendszeregyenlet és állapotváltozós leírás megadása hálózati rajz alapján

ZH

Vizsga

Ajánlott irodalom


1. félév
2. félév
3. félév
4. félév
5. félév
6. félév