Műszaki alapszigorlat

A VIK Wikiből
A lap korábbi változatát látod, amilyen Sztán Sebastian Tamás (vitalap | szerkesztései) 2015. augusztus 21., 15:16-kor történt szerkesztése után volt. (→‎Fizika)
Műszaki alapszigorlat
Általános infók
Szak
eümérnök MSc
Kredit
0
Követelmények
Vizsga
szóbeli
Elérhetőségek

Matematika

1. Műveletek vektorokkal : összeadás, kivonás, skaláris és vektoriális szorzás. Ezek definíciója, műveleti tulajdonságai, kiszámítása a vektorok derékszögű oordinátáinak ismeretében. Alkalmazás vetületek, terület, térfogat kiszámítására.

2. A térbeli analitikus geometria elemei: egyenes és sík egyenlete, távolsági és metszési feladatok megoldásának ismertetése.

3. Műveletek mátrixok körében . Az inverz mátrix fogalma, létezésének szükséges és elégséges feltétele, meghatározásának módja. A mátrix rangjának fogalma.

4. Lineáris függetlenség -ben. Lineáris egyenletrendszer megoldhatósága, a megoldások száma. A megoldás módja.

5. A komplex számtest : a komplex számok algebrai, trigonometrikus és exponenciális alakja. Műveletek a komplex számok körében.

6. Valós számsorozatok : konvergencia, divergencia fogalma és vizsgálata . A határérték létezésének elégséges feltétele. Konvergens sorozatok összegének, szorzatának, hányadosának határértékéről szóló tételek.

7. Egyváltozós valós függvények határértéke: fogalom, tételek, nevezetes határértékek.

8. Folytonosság fogalma. Az alapműveletek folytonossága. Zárt intervallumon folytonos függvények tulajdonságai.

9. A differenciálhatóság fogalma. A differenciál. Az elemi függvények deriváltjai. Differenciálási szabályok.

10. A deriváltból levonható következtetések a függvény lokális viselkedésére. A differenciálszámítás középérték-ételei. A függvény intervallumbeli viselkedésének és a függvény deriváltjának a kapcsolata.

11. Gyökközelítési módszerek: húrmódszer, érintő módszer, kombinált módszer, iteráció.

12. A Riemann -integrál fogalma , létezésének elégséges feltétele, kiszámítása, alkalmazása.

13. A primitív függvény fogalma. Keresésének néhány módszere: parciális integrálás, a helyettesítés módszere. Newton - Leibniz tétel.

14. Elsőrendű szétválasztható változójú és lineáris differenciálegyenletek megoldása.

15. Másodrendű lineáris állandó együtthatós differenciálegyenlet megoldása.

16. Többváltozós függvény parciális deriváltja, differenciálhatósága, deriváltja. Kétváltozós függvény parciális deriváltjainak, háromváltozós függvény gradiensének tulajdonságai.

17. Kettős- és hármasintegrál fogalma, létezésének elégséges feltétele, kiszámítása, alkalmazása.

18. Egy és kétparaméteres vektor- skalár függvény fogalma, differenciálhatósága. Térgörbe ívhossza, felület érintősíkja, felszíne.

19. Vektor-vektor függvény fogalma, deriváltja, divergenciája, rotációja.

20. Vektor-vektor függvény görbementi és felületmenti integrálja és ezek fizikai alkalmazása. Potenciálfüggvény.

21. Gauss- Osztrogradszkij tétel, Stokes tétel. Egzakt differenciálegyenlet.

22. Lineáris operátor fogalma, mátrixa, sajátértékei, sajátvektorai.

23. Numerikus sorok, hatványsorok.

24. Taylor sorok, Fourier sorok.

Fizika

1. Kinematikai mennyiségek és összefüggéseik.

2. Newton –törvények, a mozgásegyenlet.

3. Mechanikai munka, energia, konzervatív erőtér.

4. Megmaradási tételek ( mozgásmennyiség, impulzusmomentum, energia ) pontrendszerben.

5. Termodinamikai állapotjellemzés, extenzív és intenzív mennyiségek és szerepük a termodinamikában.

6. Hő, belső energia, a munka általánosítása, a termodinamika I. főtétele.

7. A termodinamika II. főtétele, entrópia, egyensúlyi feltételek és termodinamikai potenciálok.

8. Elektromos térerősség, potenciál, az elektrosztatika alapegyenletei integrális formában.

9. Elektromos áram, ellenállás, vezetőképesség, Joule-hő, Kirchoff-törvények.

10. Mágneses tér: mágneses indukcióvektor, a sztatikus mágneses tér alapegyenletei integrális formában.

11. Változó elektromágneses tér: elektromágneses indukció, eltolási áram, az elektromágnességtan alapegyenletei integrális formában.

12. Mechanikai- és elektromágneses rezgések: harmonikus-, csillapodó- és kényszerrezgések.

13. A hullám fogalma, hullámfüggvény, harmonikus hullám, a hullámegyenlet.

14. A hullámterjedés legfontosabb jelenségei: visszaverődés, törés, interferencia, diffrakció.

15. Atomi rendszerek viselkedésének jellegzetességei: foton, diszkrét energiaszintek, részecskék hullámszerű viselkedése. A Schrödinger –egyenlet.

Számítástechnikai ismeretek

1. félév (tavasz)
2. félév (ősz)
3. félév (tavasz)
Szigorlat
Egyéb