„Matematika A4 - Valószínűségszámítás” változatai közötti eltérés

David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
109. sor: 109. sor:
== Vélemények ==
== Vélemények ==


Az első anyagrész jóval könnyebb, így célszerű abból mind jó kisZH-kat, mind jó nagyZH-t írni. Aki esetleg gimnáziumban matematika fakultációs volt, annak a diszkrét eloszlású valószínűség változók témakör nem sok újat tartogat. A folytonos eloszlású valószínűségi változók témakör viszont sokkal nehezebb. Éles a váltás a két anyagrész között és gyorsan sok, új és bonyolult számolás zúdul rátok. Főként a kétdimenziós eloszlások témakörnél. (ED)
Az első anyagrész jóval könnyebb, így célszerű abból mind jó kisZH-kat, mind jó nagyZH-t írni. Aki esetleg gimnáziumban matematika fakultációs volt, annak a diszkrét eloszlású valószínűség változók témakör nem sok újat tartogat. A folytonos eloszlású valószínűségi változók témakör viszont sokkal nehezebb. Éles a váltás a két anyagrész között és gyorsan sok, új és bonyolult számolás zúdul rátok. Főként a kétdimenziós eloszlások témakörnél. - [[Szerkesztő:David14|ED]], 2012 ősz


Én úgy tapasztaltam, hogy a diszkrét változók esetében több gondot jelentett az, hogy amikor egy feladatot "ki kellett logikázni", akkor sokszor egzaktul nehezebben megfogalmazható kombinatorikai "megérzésekre" kellett támaszkodni. Ezeknél a feladattípusoknál nem lehet egy jól bevált algoritmust alkalmazni a megoldásra, sok gyakorlással kell valami heurisztikát felállítani, amivel az ember előre látja, hogy milyen eredményt fog adni, ha így vagy úgy kezd neki a megoldásnak. A folytonos valószínűségi változók esetében (és a kombinatorikától eltekintve diszkrét esetben) csak egyszerű összefüggéseket kell megérteni (mi az a valószínűségi változó, miben különbözik egy "hagyományos" matematikai változótól, mi az a sűrűség- vagy eloszlásfüggvény, a feltételes valószínűség, feltételes sűrűségfüggvény, várható érték, stb.), és utána a legtöbb ZH-példa gond nélkül megoldható az ismert képletek alkalmazásával. ([[Szerkesztő:Palotasb|Boldi]] ([[Szerkesztővita:Palotasb|vita]]) 2013. január 15., 16:30 (CET))
Én úgy tapasztaltam, hogy a diszkrét változók esetében több gondot jelentett az, hogy amikor egy feladatot "ki kellett logikázni", akkor sokszor egzaktul nehezebben megfogalmazható kombinatorikai "megérzésekre" kellett támaszkodni. Ezeknél a feladattípusoknál nem lehet egy jól bevált algoritmust alkalmazni a megoldásra, sok gyakorlással kell valami heurisztikát felállítani, amivel az ember előre látja, hogy milyen eredményt fog adni, ha így vagy úgy kezd neki a megoldásnak. A folytonos valószínűségi változók esetében (és a kombinatorikától eltekintve diszkrét esetben) csak egyszerű összefüggéseket kell megérteni (mi az a valószínűségi változó, miben különbözik egy "hagyományos" matematikai változótól, mi az a sűrűség- vagy eloszlásfüggvény, a feltételes valószínűség, feltételes sűrűségfüggvény, várható érték, stb.), és utána a legtöbb ZH-példa gond nélkül megoldható az ismert képletek alkalmazásával. ([[Szerkesztő:Palotasb|Boldi]] ([[Szerkesztővita:Palotasb|vita]]) 2013. január 15., 16:30 (CET))
115. sor: 115. sor:
=== Az első ZH-ról ===
=== Az első ZH-ról ===


A két zárthelyi közül ez a könnyebbik. Ez az anyagrész könnyen érthető, akár ki is logikázható. Érdemes ezt a ZH-t nagyon jól megírni, mert sokat dobhat a végső jegyen. Ha valaki járt középiskolában emelt matematika fakultációra, akkor ez a témakör nem sok újat tartogat számára. (ED)
A két zárthelyi közül ez a könnyebbik. Ez az anyagrész könnyen érthető, akár ki is logikázható. Érdemes ezt a ZH-t nagyon jól megírni, mert sokat dobhat a végső jegyen. Ha valaki járt középiskolában emelt matematika fakultációra, akkor ez a témakör nem sok újat tartogat számára. - [[Szerkesztő:David14|ED]], 2012 ősz


=== A második ZH-ról ===
=== A második ZH-ról ===


Ez az anyagrész sokkal nehezebben emészthető mint az első, valamint komolyabb matematikai előismeretek szükségeltetnek hozzá. Főként a kétváltozós parciális deriválásra és integrálásra lesz nagy szükség. Ha megértitek a témakör alapjait, akkor viszonylag könnyebben emészthetőek majd a bonyolultabb dolgok is, viszont ha az alapok kiesnek, akkor utána már nagyon nehéz újra felvenni a fonalat! (ED)
Ez az anyagrész sokkal nehezebben emészthető mint az első, valamint komolyabb matematikai előismeretek szükségeltetnek hozzá. Főként a kétváltozós parciális deriválásra és integrálásra lesz nagy szükség. Ha megértitek a témakör alapjait, akkor viszonylag könnyebben emészthetőek majd a bonyolultabb dolgok is, viszont ha az alapok kiesnek, akkor utána már nagyon nehéz újra felvenni a fonalat! - [[Szerkesztő:David14|ED]], 2012 ősz


: Én is csak azt hangsúlyoznám ki, hogy az alapokat (azokat, amik fogalomként, általános definícióként elhangzanak előadáson) érdemes nagyon alaposan megérteni, utána gondolni, és akkor a legnehezebbnek mondott példák se okozhatnak gondot, mert ebben a részben már nem nagyon kell trükközni, minden képlet és definíció magától értetődően alkalmazható a példákra, legfeljebb számolgatni kell egy kicsit. ([[Szerkesztő:Palotasb|Boldi]] ([[Szerkesztővita:Palotasb|vita]]) 2013. január 15., 16:30 (CET))
: Én is csak azt hangsúlyoznám ki, hogy az alapokat (azokat, amik fogalomként, általános definícióként elhangzanak előadáson) érdemes nagyon alaposan megérteni, utána gondolni, és akkor a legnehezebbnek mondott példák se okozhatnak gondot, mert ebben a részben már nem nagyon kell trükközni, minden képlet és definíció magától értetődően alkalmazható a példákra, legfeljebb számolgatni kell egy kicsit. ([[Szerkesztő:Palotasb|Boldi]] ([[Szerkesztővita:Palotasb|vita]]) 2013. január 15., 16:30 (CET))


[[Category:Villanyalap]]
[[Category:Villanyalap]]