„Matematika A4 - Valószínűségszámítás” változatai közötti eltérés
Nincs szerkesztési összefoglaló |
|||
34. sor: | 34. sor: | ||
** A legjobban sikerült 7 kisZH átlagának százalékos eredménye | ** A legjobban sikerült 7 kisZH átlagának százalékos eredménye | ||
Ezt a három eredményt átlagolják, és legalább 50%-os eredmény esetén kapható meg az elégséges jegy | Ezt a három eredményt átlagolják, és legalább 50%-os eredmény esetén kapható meg az elégséges jegy | ||
== Segédanyagok == | |||
=== 2012/2013 őszi félév gyakorlatai === | |||
A 2012/2013-as őszi félév gyakorlatain feladott feladatok részles, gyakvezérek által kidolgozott megoldásai! | |||
Minden témakörhöz található ezek között bőségesen gyakorló feladat, részletes megoldásokkal. A legalapabb bevezető példáktól az előfordulható legdurvább példákig. A kisZK-ra való készüléshez is nagyon jól használható. Mindegyik témakör egy-egy rövid elméleti összefoglalóval kezdődik, melyből előszeretettel kérdeznek a kisZH-k elméleti részében is! | |||
*[[Media:MatekA4_felatok_megoldással_(1).pdf| 1. Gyakorlat]] - Kombinatorikus valószínűségek | |||
*[[Media:MatekA4_felatok_megoldással_(2).pdf| 2. Gyakorlat]] - Feltételes valószínűség | |||
*[[Media:MatekA4_felatok_megoldással_(3).pdf| 3. Gyakorlat]] - Nevezetes diszkrét eloszlások | |||
*[[Media:MatekA4_felatok_megoldással_(4).pdf| 4. Gyakorlat]] - Várható érték, szórás, módusz | |||
*[[Media:MatekA4_felatok_megoldással_(5).pdf| 5. Gyakorlat]] - Eloszlásfüggvény, sűrűségfüggvény | |||
*[[Media:MatekA4_felatok_megoldással_(6).pdf| 6. Gyakorlat]] - Exponenciális és gamma eloszlás | |||
*[[Media:MatekA4_felatok_megoldással_(7).pdf| 7. Gyakorlat]] - Normális eloszlás és tulajdonságai | |||
*[[Media:MatekA4_felatok_megoldással_(8).pdf| 8. Gyakorlat]] - Kétdimenziós valószínűségi változók | |||
*[[Media:MatekA4_felatok_megoldással_(9).pdf| 9. Gyakorlat]] - Várható érték és szórás tulajdonságai | |||
*[[Media:MatekA4_felatok_megoldással_(10).pdf| 10. Gyakorlat]] - Regressziók | |||
*[[Media:MatekA4_felatok_megoldással_(11).pdf| 11. Gyakorlat]] - Folytonos valószínűségi változók transzformációi | |||
=== Egyéb hasznos segédanyagok === | |||
*[[Media:MatekA4_Eloszlasok_tablazat.pdf| Képletek]] - Nevezetes diszkrét és folytonos eloszlások összefoglaló képletei | |||
*[[Media:MatekA4-ZH2-jegyzet.pdf| 2. ZH-hoz jegyzet]] - Kézzel írt, szkennelt. Nagyon jól használható a 2. ZH készüléshez! | |||
== Első zárthelyi == | == Első zárthelyi == | ||
80. sor: | 105. sor: | ||
*[[Media:MatekA4_2012_ősz_2_PÓTZH.PDF| 2012/2013 ősz]] | *[[Media:MatekA4_2012_ősz_2_PÓTZH.PDF| 2012/2013 ősz]] | ||
[[Category:Villanyalap]] | [[Category:Villanyalap]] |
A lap 2013. január 9., 12:11-kori változata
A tantárgy nagymértékben épít a Matematika A1 - Analízis és a Matematika A2 - Vektorfüggvények című tárgyakra. Főként az egy- és többváltozós deriválásra és integrálásra lesz majd nagy szükség a félév második felében.
A tananyag két fő részből áll:
- Diszkrét eloszlású valószínűségi változók
- Folytonos eloszlású valószínűségi változók
Az első anyagrész jóval könnyebb, így célszerű abból mind jó kisZH-kat, mind jó nagyZH-t írni. Aki esetleg gimnáziumban matematika fakultációs volt, annak a diszkrét eloszlású valószínűség változók témakör nem sok újat tartogat. A folytonos eloszlású valószínűségi változók témakör viszont sokkal nehezebb, tehát egy jól sikerült első nagy zárthelyi után nem tanácsos alábbhagyni a tanulást, mert éles a váltás a két anyagrész között és gyorsan sok, új és bonyolult számolás zúdul rátok. Főként akkor, amikor belekezdtek a kétdimenziós eloszlások témakörbe.
Követelmények
- Jelenlét: A gyakorlatok 70%-án kötelező jelen lenni, és ezt ellenőrzik is.
- KisZH: A félév során a második gyakorlattól kezdve minden gyakorlat elején rövid 10-15 perces röpZH-t kell írni. (tehát összesen 10-11 darabot) Ezek értékelése 0-5 pont, és nem pótolhatóak. Mindegyik röpZH két részből áll: Egy 2 pontos rövid elméleti kérdésből (definíció, képlet, tulajdonság) és egy 3 pontos rövid számpéldából, mely az előző gyakorlaton kiadott néhány házi feladat egyikéhez nagyon hasonló. Az első néhány röpZH nagyon egyszerű, minimális készüléssel jól megírható, így célszerű ezekre rákoncentrálni.
- NagyZH: A félév során 2 darab 30 pontos nagy zárthelyit kell megírni. Mindkettőt legalább 50%-osra kell teljesíteni! Vetier András előadó feladatsoraiban általában van egy 5 pontos bónuszfeladat, ami mindig egy excel szimuláció elkészítése. Így akár 35 pontot is el lehet érni! A félév végén mindkét zárthelyi pótolható (javító célzattal is, de rontani is lehet). Csak az egyikből írható pótpót-ZH.
- Házi feladat: Vetier András előadó minden évben kiad néhány otthoni szorgalmi feladatot valamilyen excel szimuláció elkészítésére. Ezekre a feladat nehézségétől függően akár +5 pont is kapható, mely hozzáadódva az egyik ZH eredményéhez, akár 1 jeggyel is emelheti az év végi osztályzatot.
- Félévközi jegy: A félévközi jegy három részből tevődik össze:
- Első NagyZH százalékos eredménye
- Második NagyZH százalékos eredménye
- A legjobban sikerült 7 kisZH átlagának százalékos eredménye
Ezt a három eredményt átlagolják, és legalább 50%-os eredmény esetén kapható meg az elégséges jegy
Segédanyagok
2012/2013 őszi félév gyakorlatai
A 2012/2013-as őszi félév gyakorlatain feladott feladatok részles, gyakvezérek által kidolgozott megoldásai!
Minden témakörhöz található ezek között bőségesen gyakorló feladat, részletes megoldásokkal. A legalapabb bevezető példáktól az előfordulható legdurvább példákig. A kisZK-ra való készüléshez is nagyon jól használható. Mindegyik témakör egy-egy rövid elméleti összefoglalóval kezdődik, melyből előszeretettel kérdeznek a kisZH-k elméleti részében is!
- 1. Gyakorlat - Kombinatorikus valószínűségek
- 2. Gyakorlat - Feltételes valószínűség
- 3. Gyakorlat - Nevezetes diszkrét eloszlások
- 4. Gyakorlat - Várható érték, szórás, módusz
- 5. Gyakorlat - Eloszlásfüggvény, sűrűségfüggvény
- 6. Gyakorlat - Exponenciális és gamma eloszlás
- 7. Gyakorlat - Normális eloszlás és tulajdonságai
- 8. Gyakorlat - Kétdimenziós valószínűségi változók
- 9. Gyakorlat - Várható érték és szórás tulajdonságai
- 10. Gyakorlat - Regressziók
- 11. Gyakorlat - Folytonos valószínűségi változók transzformációi
Egyéb hasznos segédanyagok
- Képletek - Nevezetes diszkrét és folytonos eloszlások összefoglaló képletei
- 2. ZH-hoz jegyzet - Kézzel írt, szkennelt. Nagyon jól használható a 2. ZH készüléshez!
Első zárthelyi
Az első zárthelyi anyaga nagyrészt a diszkrét eloszlású valószínűségi változók témakör, de általában van egy folytonos valváltozós példa is. A két zárthelyi közül ez a könnyebbik. Ez az anyagrész könnyen érthető, akár ki is logikázható. Érdemes ezt a ZH-t nagyon jól megírni, mert sokat dobhat az végső jegyen. Ha valaki járt középiskolában emelt matematika fakultációra, akkor ez a témakör nem sok újat tartogat számára.
Rendes ZH
- 2007/2008 ősz - megoldásokkal
- 2008/2009 ősz
- 2009/2010 ősz - megoldásokkal
- 2010/2011 ősz - A csoport
- 2010/2011 ősz - B csoport
- 2011/2012 ősz
- 2011/2012 kereszt - Ferenczi
Pót ZH
- 2007/2008 ősz - megoldásokkal
- 2011/2012 ősz
- 2011/2012 kereszt
- 2012/2013 ősz
Második zárthelyi
A második zárthelyi anyaga a folytonos egy és kétdimenziós valószínűségi változók témakörök. Ez az anyagrész sokkal nehezebben emészthető mint az első, valamint komolyabb matematikai előismeretek szükségeltetnek hozzá. Főként a kétváltozós parciális deriválásra és integrálásra lesz nagy szükség. Az első zárthelyi után nem célszerű alábbhagyni a tanulást! Ha megértitek a témakör alapjait, akkor viszonylag könnyebben emészthetőek majd a bonyolultabb dolgok is, viszont ha az alapok kiesnek, akkor utána már nagyon nehéz újra felvenni a fonalat!
Rendes ZH
- 2008/2009 ősz - A csoport
- 2008/2009 ősz - B csoport
- 2009/2010 ősz - megoldásokkal
- 2009/2010 kereszt - Ferenczi
- 2010/2011 ősz
- 2010/2011 kereszt
- 2011/2012 ősz
- 2011/2012 kereszt
- 2011/2012 kereszt - Ferenczi