Mesterséges intelligencia

A VIK Wikiből
(Mi szócikkből átirányítva)
Mesterséges intelligencia
Tárgykód
VIMIAC10
Régi tárgykód
VIMIAC00
Általános infók
Szak
info
Kredit
3
Ajánlott félév
5
Keresztfélév
nincs
Tanszék
MIT
Követelmények
Labor
nincs
KisZH
nincs
NagyZH
2 db
Házi feladat
3 db
Vizsga
nincs
Elérhetőségek
Ez az új tanterv tárgya, a régiért lásd: Mesterséges intelligencia (régi)


A tantárgy célkitűzése a mesterséges intelligencia területének rövid, ám igényes bemutatása. A felvezetés lépései: (1) az intelligens viselkedés számítási modellekkel való kifejezés problémaköre, (2) a mesterséges intelligencia formális és heurisztikus módszereinek elemzése és alkalmazása, (3) a gyakorlati megvalósítások módszerei és problémái. A tárgy az informatikus hallgatók azokat a képességeit fejleszti, melyek révén képesek lesznek:

  • tanulmányozni számítógép újszerű használatát,
  • fejleszteni hatékony módszereket számítási problémák megoldására,
  • megérteni számítástechnika/-tudomány technológiai / koncepcionális korlátjait
  • intellektuálisan megérteni az algoritmus központi szerepét az informatikai rendszerekben.

A tárgy 2017 őszétől újabb változáson ment keresztül.

Követelmények

  • Az előadásokon való részvétel erősen ajánlott, hiszen a tárgyhoz nem tartozik se gyakorlat, se labor.
  • Mindkét ZH-n el kell érni a minimum 40%-ot, amely a 32 pontos ZH-nál 12.8 pontot jelent, tehát ~25 pontot viszel minimum a ZH-kból. (25.6) Ha az elméletet jól megérted, sok feladat megoldása egyszerűen kitalálható még úgy is, hogy nem adtak hozzá gyakorló feladatot.
  • Három db házi feladat lesz a félévben, egyenként 12 pontért. Érdemes mindenképp megcsinálni őket, mert a gondolkodásmód az elkészítésükhöz, segíteni fog a ZH teljesítésében, és nem kevés pontot kaphatsz értük.

Félévvégi jegy

  • A tárgyból nincs vizsga, így a féléves teljesítményedre kapod az osztályzatot. A tárggyal maximum 100 pontot tudsz szerezni, a házikat és a ZH-kat összegezve. A 100 pontból is minimum 40%-kot kell elérni a tárgy teljesítéséhez.
  • 32 (ZH1) + 32 (ZH2) + 3*12 (HF1,2,3) = 100 pont(max).
  • Ponthatárok:
Pont Jegy
0 - 39 1
40 - 49 2
50 - 64 3
65 - 79 4
80 - 100 5

Segédanyagok

Hivatalos gyakorló feladatok

Keresési algoritmusok

Egybe : All in One

Házi

A házi feladatokat a tárgy házifeladat portálján kell beadni, de a házi feladat kiírások a tárgyhonlapon érhetőek el. A házikat Python vagy Java nyelven kell elkészíteni, és a HF portálra való feltöltéskor automatikusan kiértékelődnek.

2018-ban egy nagyméretű labirintust kellett hatékonyan bejárni, Twitter üzenetek pozitív/negatív jellegeit kitalálni, illetve egy neurális háló építésével egy kémiai adatbázis tanulása után kritikus hőmérsékleteket becsülni. A programokban használt algoritmus nincs szorosan kikötve, de az egyszerű megoldás érdekében javasolnak a feladatban módszereket (pl. szélességi keresés, naiv Bayes-háló, backpropagation-alapú neurális háló.

A házi feladatok nem túl nehezek, de azért sok időt el tudnak venni. Általában a tanult algoritmusok alapszintű implementálása nem elegendő a maximális pont eléréséhez, önmagadtól is ki kell találni valami trükközést, ami hatékonyabbá teszi a programot.

Ha a feladat jellege lehetővé teszi, javasolt, hogy elsőnek az adatok reprezentációjára találj valamilyen módszert, ez ugyanis nagyban segíti a munkádat. Pl. a labirintusos feladatnál pár perc alatt összedobható egy kis program (pl. HTML/JS alapokon), ami kijelzi a labirintus táblázatát, a lépkedéseket pedig időközönként jeleníti meg. Sokkal könnyebb így megkeresni, hol csúszik félre az algoritmusod, mint konzolban szöveges alapon keresgélni a rengeteg adat közül.

A házi feladatot tesztelő portál most még (2018) nem túl intelligens. Nagyon kevés információt ír ki a hibákról, alapesetben a be- és kimeneti adatokat se jeleníti meg. Ha szükséged van a tesztadatokra, írd ki stdr-re, akkor, bár abortál a program, az adatokat láthatod. Néha beakad a kiértékelés, ilyenkor segíthet, ha újra feltöltöd ugyanazt a megoldást, így újraindul a kiértékelés. (Ezek még 2020-ban is igazak)

2020-ban

  • első házinál raklapokat kellett lepakolni egy megadott területen (nehezítés kép oszlopok is voltak megadott koordinátákon, amik korlátozták a raklapok lepakolásának lehetőségeit).
  • második házinál egy vírusfertőzöttséget felismerő Bayes-hálót kellett készíteni, és abban következtetéseket megvalósítani
  • harmadik házniál egy flappy bird programot kellett q-tanulással kitanítani (ehhez elég sok kódrészt kaptunk alapnak)

ZH

Régi képzés ZH-k

Tippek

  • Érdemes sok feladatot nézni, és azokat begyakorolni, mert főleg feladatok vannak a zh-ban!
  • Ha érdekel az MI, akkor se hagyd, hogy ez a tárgy elvegye a kedved! Rengeteg érdekes link van itt is, érdemes belenézni a Harvard vagy a Berkeley kurzusaiba. (Utóbbi diái egész ismerősek is lehetnek.)

Kedvcsináló

Kedvcsináló

  • A tárgy érdekes is lehetne, de Hullám Gábor előadásában határozottan nem az. Sajnos nagyon lassúak és vontatottak voltak az előadások, és az egyszerű dolgok is túlbonyolítottan votlak magyarázva. Ennek ellenére a tárgy egészen teljesíthető a háziknak és a begyakorolható zh-s feladatoknak köszönhetően. (2020, HD)


Bevezetők
1. félév
2. félév
3. félév
4. félév
5. félév
6. félév
7. félév