„Laboratórium 1 - 4. Mérés: Frekvenciatartománybeli jelanalízis” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
 
(23 közbenső módosítás, amit 12 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{GlobalTemplate|Villanyalap|LaborI4esMeres}}
{{Vissza|Laboratórium 1}}


===Beugró===
__TOC__


A beugró nem volt gáz fel kellett írni <math> \mathfrak{F}\{f(t-T)\}, \mathfrak{F}\{f(t)*g(t)\} ,\mathfrak{F}\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\} </math> ''Fourier-transzformáltakat'', illetve plusz feladatként egy négyszögimpulzus deriváltját kellett lerajzolni. A mérésvezetők abszolút segítőkészek voltak, a mérés végén mérőcsoportonként személyesen átnézték a jegyzőkönyvet, ahol hiba volt ott kérdezgettek.
== A mérésről ==


----
A beugró nem volt gáz fel kellett írni <math> \mathfrak{F}\{f(t-T)\}</math> , <math>\mathfrak{F}\{f(t)*g(t)\}</math> , <math> \mathfrak{F}\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\} </math> ''Fourier-transzformáltakat'', illetve plusz feladatként egy négyszögimpulzus deriváltját kellett lerajzolni. A mérésvezetők abszolút segítőkészek voltak, a mérés végén mérőcsoportonként személyesen átnézték a jegyzőkönyvet, ahol hiba volt ott kérdezgettek.


=====1.1.1. Oszcilloszkóp FFT módja=====
=== A méréshez segítség ===
'''1. Oszcilloszkóp FFT módja'''
* [Math]  >> [FFT] gombokkal
* [Math]  >> [FFT] gombokkal
* Periódikus jel felharmónikusainak mérésénél a számított érték (többek között) azért fog eltérni a mért értéktől, mert fehér zaj van jelen, illetve a generátor sem tökéletes jelalakot ad ki.  
* Periódikus jel felharmónikusainak mérésénél a számított érték (többek között) azért fog eltérni a mért értéktől, mert fehér zaj van jelen, illetve a generátor sem tökéletes jelalakot ad ki.  
* Periódikus jel felharmónikusainak számítása komplex [http://en.wikipedia.org/wiki/Fourier_series Fourier-sor] együtthatókból (csak mert ez pl nincs benne a Fodor: Hálózatok és Rendszerek c. jegyzet 211 oldala környékén, és sztem hasznos) , azaz <math> \bar U_k  = \frac{1}
* Periódikus jel felharmónikusainak számítása komplex [http://en.wikipedia.org/wiki/Fourier_series Fourier-sor] együtthatókból (csak mert ez pl nincs benne a Fodor: Hálózatok és Rendszerek c. jegyzet 211 oldala környékén, és sztem hasznos) , azaz <math> \bar U_k  = \frac{1} {{T }}\int\limits_{ 0 }^T  {u(t)e^{ - jk \omega t} dt} </math> -ból, ahol
{{T }}\int\limits_{ 0 }^T  {u(t)e^{ - jk \omega t} dt}  
 
</math> -ból, ahol <math> \bar U_k  = \bar U_{ - k}^ * = \frac{{U_{Ak}  + jU_{Bk} }}
<math> \bar U_k  = \bar U_{ - k}^ * = \frac{{U_{Ak}  + jU_{Bk} }}
{2} \Leftrightarrow \left\{ \begin{matrix}  
{2} \Leftrightarrow \left\{ \begin{matrix}  U_{Ak}  = \bar U_k  + \bar U_{ - k}  \hfill \\ U_{Bk}  = j(\bar U_k  - \bar U_{ - k} ) \hfill \end{matrix}  \right\} \Leftrightarrow u(t) = \frac{{\bar U_0 }} {2} + \sum\limits_{k > 0} {\left( {U_{Ak} \cos (nt) + U_{Bk} \sin (n\omega t)} \right)} </math>  .<br>  
   U_{Ak}  = \bar U_k  + \bar U_{ - k}  \hfill \\
 
  U_{Bk}  = j(\bar U_k  - \bar U_{ - k} ) \hfill
A felharmonikusok sora <math> U_k = \left| {\bar U_{k} } \right| = \frac{\sqrt{U_{Ak}^2  + U_{Bk}^2 }}{2} </math> .
\end{matrix}  \right\} \Leftrightarrow u(t) = \frac{{\bar U_0 }}
 
{2} + \sum\limits_{k > 0} {\left( {U_{Ak} \cos (nt) + U_{Bk} \sin (n\omega t)} \right)} </math>  .<br>  
A felharmonikusok sora <math> U_k = \left| {\bar U_{k} } \right| = \frac{\sqrt{U_{Ak}^2  + U_{Bk}^2 }}{2} </math> .
Adott jelek felharmonikusai:
Adott jelek felharmonikusai:
|U amplitudójú||<math> U_Ak </math> ||<math> U_Bk </math>  
|}
{| class="wikitable" border="1"
|[http://mathworld.wolfram.com/FourierSeriesSquareWave.html négyszög]|| <math> 0 </math> || <math> 2\cdot U\frac{1 - (-1)^{k} }{k \pi} </math> k ptlan
|-
|}
! U amplitudójú   !!  <math> U_Ak </math> !! <math> U_Bk </math>  
|[http://mathworld.wolfram.com/FourierSeriesTriangleWave.html háromszög]|| <math> 0 </math> || <math> U\frac{8\cdot (-1)^{\frac{k-1}{2}} }{k^2 \cdot 2\pi^2} </math> k ptlan
|-
|}
|[http://mathworld.wolfram.com/FourierSeriesSquareWave.html négyszög]|| <math> 0 </math> || <math> 2\cdot U\frac{1 - (-1)^{k} }{k \pi} </math> , ahol k páratlan
|-
|[http://mathworld.wolfram.com/FourierSeriesTriangleWave.html háromszög]|| <math> 0 </math> || <math> U\frac{8\cdot (-1)^{\frac{k-1}{2}} }{k^2 \cdot \pi^2} </math> , ahol k páratlan
|-
|[http://mathworld.wolfram.com/FourierSeriesSawtoothWave.html fűrész]||<math> 0 </math>||<math> -\frac{1}{k\pi} </math>
|[http://mathworld.wolfram.com/FourierSeriesSawtoothWave.html fűrész]||<math> 0 </math>||<math> -\frac{1}{k\pi} </math>
|}
|}




=====1.1.2. Periódikus jel spektruma=====
'''2. Periódikus jel spektruma'''
 
* Függvénygenerátoron: [Square] >> [DutyCycle] (Az impulzus kitöltési tényezőjét mutatja)
* Függvénygenerátoron: [Square] >> [DutyCycle] (Az impulzus kitöltési tényezőjét mutatja)
* Fourier-transzofmált
* Fourier-transzofmált
36. sor: 39. sor:
* A kitöltési tényező, azaz <math> \frac{\tau}T</math> növelésével közelíthetünk a periódikus négyszögjel vonalas spekrumához.  
* A kitöltési tényező, azaz <math> \frac{\tau}T</math> növelésével közelíthetünk a periódikus négyszögjel vonalas spekrumához.  


=====2. Szűrő vizsgálata oszcilloszkóppal=====
'''3. Szűrő vizsgálata oszcilloszkóppal'''
* Alul-/felüláteresztő szűrő határfrekvenciája (ahol <math>-3dB</math>,  azaz <math>\frac{1}{\sqrt{2}}</math>-szeres az erősítése): <math> f_c = \frac{1}{RC}</math>
 
* Alul-/felüláteresztő szűrő határfrekvenciája (ahol <math>-3dB</math>,  azaz <math>\frac{1}{\sqrt{2}}</math>-szeres az erősítése): <math> f_c = \frac{1}{2 \pi RC}</math>
* [Mode/Coulping] >> [DC]/[AC] esetén DC/AC-csatolt az oszcilloszkóp, így a bemenete modellezhető egy elsőfokú alul-/felüláteresztő szűrővel.  
* [Mode/Coulping] >> [DC]/[AC] esetén DC/AC-csatolt az oszcilloszkóp, így a bemenete modellezhető egy elsőfokú alul-/felüláteresztő szűrővel.  


=====3. Átviteli karakerisztika digitális multiméter=====
'''4. Átviteli karakerisztika digitális multiméter'''
 
* érdemes <math>0,1 f_c < f < 10 f_c </math> frekvenciákon mérni (logaritmikus [1,2,5] léptékben)
* érdemes <math>0,1 f_c < f < 10 f_c </math> frekvenciákon mérni (logaritmikus [1,2,5] léptékben)
* a DMM [AC V] gombja után dB kijelzésre a [Shift] >> [Null/dB] gomb, majd aluláteresztő szűrő esetén kis frekvencián nullázni a [Null/dB] gombbal (ezzel beállítottuk a dB skála referenciaszintjét)
* a DMM [AC V] gombja után dB kijelzésre a [Shift] >> [Null/dB] gomb, majd aluláteresztő szűrő esetén kis frekvencián nullázni a [Null/dB] gombbal (ezzel beállítottuk a dB skála referenciaszintjét)


=====4. széles sávú gerjesztés=====
'''5. széles sávú gerjesztés'''
 
* A multisinus egy olyan szinuszos függvény, aminek a frekvenciája lineárisan nő (adott értéktől adott értékig), tehát ez egy szélessávú jel. [A <math> sinc (\Omega t) </math> függvény is szélessávú [Arb] >> [Sinc], ennek Fourier-transzformáltja egy <math> \frac{\pi}{\Omega}\epsilon(\omega + \Omega) - epsilon(\omega  \Omega) </math> "frekvencia-ablak", amit egy szűrő "összenyom"]. A függvénygenerátor [Sine] jelalakjának frekvenciasöprésének tartományát [Sweep] módban állíthatjuk be. (másik vélemény: nekünk nem fogadták el a sweepet, hanem ''Arg'' módban kellett használni a a függvénygenerátort) _
* A multisinus egy olyan szinuszos függvény, aminek a frekvenciája lineárisan nő (adott értéktől adott értékig), tehát ez egy szélessávú jel. [A <math> sinc (\Omega t) </math> függvény is szélessávú [Arb] >> [Sinc], ennek Fourier-transzformáltja egy <math> \frac{\pi}{\Omega}\epsilon(\omega + \Omega) - epsilon(\omega  \Omega) </math> "frekvencia-ablak", amit egy szűrő "összenyom"]. A függvénygenerátor [Sine] jelalakjának frekvenciasöprésének tartományát [Sweep] módban állíthatjuk be. (másik vélemény: nekünk nem fogadták el a sweepet, hanem ''Arg'' módban kellett használni a a függvénygenerátort) _
* Ismét a referenciaszint (az oszcilloszkóp bal oldalán lévő legmagasabb érték) <math> \sqrt 2 </math> -edéhez tartozó frekvenciát kell keresni aluláteresztő szűrő esetén (felül.á.sz. esetén a jobboldalon van a referenciaszint).  
* Ismét a referenciaszint (az oszcilloszkóp bal oldalán lévő legmagasabb érték) <math> \sqrt 2 </math> -edéhez tartozó frekvenciát kell keresni aluláteresztő szűrő esetén (felül.á.sz. esetén a jobboldalon van a referenciaszint).  
* A legnagyobb hibát a leolvasás okozhatja, emellett az átvitel hibája sem tökéletes, ahogy a függvénygenerátor sem az.  
* A legnagyobb hibát a leolvasás okozhatja, emellett az átvitel hibája sem tökéletes, ahogy a függvénygenerátor sem az.  


=====5. szinuszjel "torzítása" oszcilloszkópon=====
'''6. szinuszjel "torzítása" oszcilloszkópon'''
* Ha az oszcilloszkóp nincsen túlvezérelve, azaz a függőleges érzékenység akkora, hogy a jel a képernyőből nem lóg ki, akkor a szinuszjel alapharmónikus frekvenciájánál jól látható a kiemelkedés, ettől eltérő frekvencián pedig a hozzá képest elhanyagolható zaj. Ha a szinuszjelet torzítjuk (pusztán a V/div csökkentésével, azaz nem a jelet torzítjuk, hanem a kijelzést), a jel egyre kezd hasonlítani a négyszögjelhez. Így a spektrumja is kénytelen lesz a négyszögjel spektrumához közelíteni, hiszen az oszcilloszkóp az általa kijelzett jelből számítja FFT segítségével a spektrumot. A spektrum az 1/f -es vonalas spektrumhoz tart.
 
----
 
====Házihoz====
 
* [https://wiki.sch.bme.hu/pub/Villanyalap/LaboRI/hazi_04_perpernorbi.pdf Házi]
 
* {{InLineFileLink|Villanyalap|LaborI4esMeres|4_ell.pdf|Kérdésekhez kidolgozás}}


* Adott egy diszkrét jel mintasorozata. A mintavételi idő <math> \Delta t </math> .Minimum hány alappontos DFT műveletre van szükség, ha a minta spektrumát <math> \Delta f </math> felbontással szeretnénk vizsgálni?
* Ha az oszcilloszkóp nincsen túlvezérelve, azaz a függőleges érzékenység akkora, hogy a jel a képernyőből nem lóg ki, akkor a szinuszjel alapharmónikus frekvenciájánál jól látható a kiemelkedés, ettől eltérő frekvencián pedig a hozzá képest elhanyagolható zaj. Ha a szinuszjelet torzítjuk (pusztán a V/div csökkentésével, azaz nem a jelet torzítjuk, hanem a kijelzést), a jel egyre kezd hasonlítani a négyszögjelhez. Így a spektrumja is kénytelen lesz a négyszögjel spektrumához közelíteni, hiszen az oszcilloszkóp az általa kijelzett jelből számítja FFT segítségével a spektrumot. A spektrum az 1/f -es vonalas spektrumhoz tart.
<math> N= \frac{\frac{1}{\Delta t}}{\Delta f} </math>


== Házihoz segítség ==
* FONTOS!!! Bármilyen szimmetrikus jelet DC komponens nélkül kell ábrázolni és számolni vele, emiatt az itt található kidolgozás sem jó ebből a szempontból. <small>(azaz pl a négyszögjelnél [1,0] értékek helyett [1,-1] kell, és amúgy matlab kódok komplett copypaste-elése nem ajánlott)</small> ÉS pl. fűrészfog jelnél a függvény az 1, -1 pontokban nem értelmezett!
* [[Media:Labor1_mérés4_házi1.pdf‎|Kidolgozott házi feladat]]
* [http://www.hobbielektronika.hu/cikkek/fourier_transzformacio.html?pg=5&Submit=%3E%3E DFT-s házihoz]
* [http://www.hobbielektronika.hu/cikkek/fourier_transzformacio.html?pg=5&Submit=%3E%3E DFT-s házihoz]


''' 2015 ősz tapasztalatai:'''
* a tárgyhonlapon lévő DFT programmal érdemes számolni
* A jeleket [-1;1] értékek között kell felvenni, nem pedig [0;1] közt
* ( [-0.5;0.5] is megfelel és hasonlók, lényeg hogy ne legyen benne offset )
* Ábrákon ne hiányozzon a tengelyek elnevezése, negatív frekvenciatartomány lehetőleg ne legyen
* Elfogadott házi : [[Media:Labor1_meres4_151110.pdf‎|Feladat]] [[Media:Labor1_hazi4_151110.pdf‎|Megoldás]]


  -- [[KissGergely|Ger******]] - 2007.12.01.
== Beugró kérdések kidolgozása ==


  -- [[MolnarGabika|GAbika]] - 2010.11.04.
*[[Media:labor1_mérés4_ellekérdések.pdf|Ellenőrző kérdések kidolgozása]]
*[[Media:4meres_ellenorzo_kerdesek.pdf|Ellenőrző kérdések egy másik kidolgozása]]
Beugróban az elemi jelek spektrumának felrajzolásánál nem elegendő csak a burkológörbe!


== Egyéb ==
*[[Media:Négyszögjel Háromszögjel felharmonikusai.pdf|A 4.2 méréshez kiszámított szimmetrikus négy- és háromszögjelek első tíz felharmonikusai]]


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2019. december 12., 18:46-kori változata


A mérésről

A beugró nem volt gáz fel kellett írni , , Fourier-transzformáltakat, illetve plusz feladatként egy négyszögimpulzus deriváltját kellett lerajzolni. A mérésvezetők abszolút segítőkészek voltak, a mérés végén mérőcsoportonként személyesen átnézték a jegyzőkönyvet, ahol hiba volt ott kérdezgettek.

A méréshez segítség

1. Oszcilloszkóp FFT módja

  • [Math] >> [FFT] gombokkal
  • Periódikus jel felharmónikusainak mérésénél a számított érték (többek között) azért fog eltérni a mért értéktől, mert fehér zaj van jelen, illetve a generátor sem tökéletes jelalakot ad ki.
  • Periódikus jel felharmónikusainak számítása komplex Fourier-sor együtthatókból (csak mert ez pl nincs benne a Fodor: Hálózatok és Rendszerek c. jegyzet 211 oldala környékén, és sztem hasznos) , azaz -ból, ahol

Értelmezés sikertelen (ismeretlen „\hfill” függvény): {\displaystyle \bar U_k = \bar U_{ - k}^ * = \frac{{U_{Ak} + jU_{Bk} }} {2} \Leftrightarrow \left\{ \begin{matrix} U_{Ak} = \bar U_k + \bar U_{ - k} \hfill \\ U_{Bk} = j(\bar U_k - \bar U_{ - k} ) \hfill \end{matrix} \right\} \Leftrightarrow u(t) = \frac{{\bar U_0 }} {2} + \sum\limits_{k > 0} {\left( {U_{Ak} \cos (nt) + U_{Bk} \sin (n\omega t)} \right)} } .

A felharmonikusok sora .

Adott jelek felharmonikusai:

U amplitudójú
négyszög , ahol k páratlan
háromszög , ahol k páratlan
fűrész


2. Periódikus jel spektruma

  • Függvénygenerátoron: [Square] >> [DutyCycle] (Az impulzus kitöltési tényezőjét mutatja)
  • Fourier-transzofmált

  • A kitöltési tényező, azaz növelésével közelíthetünk a periódikus négyszögjel vonalas spekrumához.

3. Szűrő vizsgálata oszcilloszkóppal

  • Alul-/felüláteresztő szűrő határfrekvenciája (ahol , azaz -szeres az erősítése):
  • [Mode/Coulping] >> [DC]/[AC] esetén DC/AC-csatolt az oszcilloszkóp, így a bemenete modellezhető egy elsőfokú alul-/felüláteresztő szűrővel.

4. Átviteli karakerisztika digitális multiméter

  • érdemes frekvenciákon mérni (logaritmikus [1,2,5] léptékben)
  • a DMM [AC V] gombja után dB kijelzésre a [Shift] >> [Null/dB] gomb, majd aluláteresztő szűrő esetén kis frekvencián nullázni a [Null/dB] gombbal (ezzel beállítottuk a dB skála referenciaszintjét)

5. széles sávú gerjesztés

  • A multisinus egy olyan szinuszos függvény, aminek a frekvenciája lineárisan nő (adott értéktől adott értékig), tehát ez egy szélessávú jel. [A függvény is szélessávú [Arb] >> [Sinc], ennek Fourier-transzformáltja egy "frekvencia-ablak", amit egy szűrő "összenyom"]. A függvénygenerátor [Sine] jelalakjának frekvenciasöprésének tartományát [Sweep] módban állíthatjuk be. (másik vélemény: nekünk nem fogadták el a sweepet, hanem Arg módban kellett használni a a függvénygenerátort) _
  • Ismét a referenciaszint (az oszcilloszkóp bal oldalán lévő legmagasabb érték) -edéhez tartozó frekvenciát kell keresni aluláteresztő szűrő esetén (felül.á.sz. esetén a jobboldalon van a referenciaszint).
  • A legnagyobb hibát a leolvasás okozhatja, emellett az átvitel hibája sem tökéletes, ahogy a függvénygenerátor sem az.

6. szinuszjel "torzítása" oszcilloszkópon

  • Ha az oszcilloszkóp nincsen túlvezérelve, azaz a függőleges érzékenység akkora, hogy a jel a képernyőből nem lóg ki, akkor a szinuszjel alapharmónikus frekvenciájánál jól látható a kiemelkedés, ettől eltérő frekvencián pedig a hozzá képest elhanyagolható zaj. Ha a szinuszjelet torzítjuk (pusztán a V/div csökkentésével, azaz nem a jelet torzítjuk, hanem a kijelzést), a jel egyre kezd hasonlítani a négyszögjelhez. Így a spektrumja is kénytelen lesz a négyszögjel spektrumához közelíteni, hiszen az oszcilloszkóp az általa kijelzett jelből számítja FFT segítségével a spektrumot. A spektrum az 1/f -es vonalas spektrumhoz tart.

Házihoz segítség

  • FONTOS!!! Bármilyen szimmetrikus jelet DC komponens nélkül kell ábrázolni és számolni vele, emiatt az itt található kidolgozás sem jó ebből a szempontból. (azaz pl a négyszögjelnél [1,0] értékek helyett [1,-1] kell, és amúgy matlab kódok komplett copypaste-elése nem ajánlott) ÉS pl. fűrészfog jelnél a függvény az 1, -1 pontokban nem értelmezett!
  • Kidolgozott házi feladat
  • DFT-s házihoz

2015 ősz tapasztalatai:

  • a tárgyhonlapon lévő DFT programmal érdemes számolni
  • A jeleket [-1;1] értékek között kell felvenni, nem pedig [0;1] közt
  • ( [-0.5;0.5] is megfelel és hasonlók, lényeg hogy ne legyen benne offset )
  • Ábrákon ne hiányozzon a tengelyek elnevezése, negatív frekvenciatartomány lehetőleg ne legyen
  • Elfogadott házi : Feladat Megoldás

Beugró kérdések kidolgozása

Beugróban az elemi jelek spektrumának felrajzolásánál nem elegendő csak a burkológörbe!

Egyéb