„Matematikai statisztika” változatai közötti eltérés

 
(11 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
29. sor: 29. sor:


==Segédanyagok==
==Segédanyagok==
[http://www.szit.bme.hu/~kela/stat.pdf Hivatalos tanszéki jegyzet]
=== Hivatalos jegyzetek ===
*Dr. Ketskeméty László, Pintér Márta - [http://www.szit.bme.hu/~kela/stat.pdf Bevezetés a matematikai statisztikába]
*Dr. Telcs András - [http://www.szit.bme.hu/~telcs/stat/SJ.pdf Statisztika jegyzet]
*Maricza István - [http://www.cs.bme.hu/~telcs/stat/MariczaStat.pdf Matematikai statisztika]
=== Hallgatói kidolgozás ===
*Az első ZH-hoz készült [[Media:MatStat_zh1_jegyzet.pdf | kidolgozás]].
=== Hasznos linkek ===
*Várhelyi Klára - [https://dl.dropboxusercontent.com/s/lji48ljyw5w7b0t/index.html#tananyag SPSS anyagai]
 
==ZH==
===Első ZH===
*[[Media: MatStat_zh1_minta.pdf|Minta ZH]] - [[Media: MatStat_zh1_minta_megoldas.pdf|Hivatalos megoldás]]
*[[Media: MatStat_zh1_20151019.pdf|2015.10.19]]
 
===Második ZH===
*[[Media: MatStat_zh2_20151123.pdf|2015.11.23]]
 
==Vizsga==
===Tételsor===
{{Rejtett
|mutatott='''2015'''
|szöveg=
# Alapfogalmak: statisztikai sokaság, minta, statisztika. Becsléselmélet. Torzítatlanság, konzisztencia, erős konzisztencia, elégségesség, hatásosság. Cramer-Rao-egyenlőtlenség. Maximum-likelihood módszer, momentum-módszer. Intervallumbecslések. A normális eloszlásból származtatott eloszlások: chi-négyzet, Student- és Fisher- eloszlások. Lukács-tétel.
# Hipotéziselmélet I. Alapfogalmak: nullhipotézis, alternatív hipotézis, elsőfajú hiba, másodfajú hiba. Szignifikancia-szit, elsőfajú hibavalószínűség. Kritikus tartomány, kritikus érték, próbastatisztika. Paraméteres próbák: u- és t- próbák, F-próba, Welch-próba,
# Hipotéziselmélet II. Nemparaméteres próbák: Illeszkedésvizsgálat, függetlenségvizsgálat, homogenitásvizsgálat. Szignifikancia-próbák: chi-négyzet próbák, Kolmogorov-Szmirnov-próbák. Mann-Whitney próba, Kruskal-Wallis próba, Wilcoxon próba, Friedman próba. Az egzakt tesztek. Szekvenciális próba.
# Szórásanalízis. Alapfogalmak, kísérleti elrendezések. Egyszeres osztályozás (One.Way ANOVA), Bartlett-próba. Kétszeres osztályozás. Interakció figyelembevétele. Nem teljes elrendezések, latin négyzetek módszere. Fisher-Cohran tételek.
# Regresszióanalízis I. Elméleti háttér: a feltételes várható érték. A kétváltozós regresszió fajtái: Lineáris regressziók, polinomiális regresszió, lineárisra visszavezethető kétparaméteres regressziók. Nemlineáris regresszió. A legkisebb négyzetek módszere. Szórásanalízis (ANOVA) a modell érvényességének eldöntésére. Meghatározottsági együttható.
# Regresszióanalízis II. Többváltozós lineáris regresszió. Modellépítési technikák. Korrelációs együtthatók: totális-, többszörös-, parciális-. A béta együtthatók. Az adjusztált meghatározottsági együttható. Multikollinearitás. Heteroszkedaszticitás. Outlier pontok detektálása, elemzése.
# Faktor- és főkomponensanalízis. A k-faktoros modell előállítása, feltételei. A KMO és MSA statisztikák, a Bartlett-féle gömb próba. Kommunalitás, átviteli mátrix. Forgatások. A faktorok elmentése, értelmezése. Főirányok és főkomponens varianciák. A főkomponens forgatás optimális tulajdonsága, a Watanabe-tétel. A főkomponensek jelentése.
# Egyéb adatredukciós módszerek: Klaszteranalízis: Dinamikus és hierarchikus módszerek. A távolságfüggvény definíciója, példák. Osztályozás, diszkriminancia-analízis, a legközelebbi társ módszer. A legközelebbi társ gyors megkeresése.
# Többdimenziós skálázás. A matematikai háttér. Euklideszi távolságmátrix. A módszerek: CMDS, nemmetrikus CMDS (Shephard), replikációs MDS, súlyozott többdimenziós skálázás (WMDS).
# Kérdőíves felmérések módszertana. Adatgyűjtési technikák.  A kérdőív megszerkesztésének elvei. Kérdések és állítások típusai. Likert-skála, szimmetrikus differenciál, mátrix-kérdések. Etikai vonatkozások.
# Alapfogalmak: reprezentativitás, cenzus, fókuszcsoport, mintavételi keret. Mintavételezési technikák. EVM, nem véletlen mintavételezés, rétegzett mintavételezés, csoportos mintavételezés, szekvenciális mintavételezés, stb.. A szükséges minta elemszám meghatározása. A különböző egyenlőtlenségeken alapuló becslések a minimális mintaelem számra.
# Idősorok elemzése. Determinisztikus modellek. A trendfüggvény és a szezonális komponens. A zajfolyamat, a fehérzaj. Előjelmódszer, váltakozáselemzés, csúcsmódszer.
# A periodogramm. Exponenciális szűrések. Box-Jenkins modellek: AR, MA, ARMA és ARIMA modellek. 
}}
A lap eredeti címe: „https://vik.wiki/Matematikai_statisztika