„Fizika 2 - Vizsgaképlettár” változatai közötti eltérés
A VIK Wikiből
aNincs szerkesztési összefoglaló |
a David14 átnevezte a(z) VizsgaKepletTar lapot a következő névre: Fizika 2 - Vizsgaképlettár: Pontos cím! |
||
(2 közbenső módosítás ugyanattól a felhasználótól nincs mutatva) | |||
4. sor: | 4. sor: | ||
| <math>\Phi _B = \int {\bf{B}} \cdot d{\bf{A}}</math> (mágneses fluxus, 30.8) || \Phi _B = \int {\bf{B}} \cdot d{\bf{A}} | | <math>\Phi _B = \int {\bf{B}} \cdot d{\bf{A}}</math> (mágneses fluxus, 30.8) || \Phi _B = \int {\bf{B}} \cdot d{\bf{A}} | ||
|- | |- | ||
| <math>L = \frac{{N\Phi _B }}{I}</math> (önindukció, 32.6) || L = \frac{{N\Phi _B }}{I} | | <math>L = \frac{{N\Phi _B }}{I}</math> (önindukció, 32.6) || L = \frac{ {N\Phi _B }}{I} | ||
|- | |- | ||
| <math>\varepsilon _L = - L\frac{{dI_{} }}{{dt}}</math> (L induktivitás ellenfesz, 32.6) || \varepsilon _L = - L\frac{{dI_{} }}{{dt}} | | <math>\varepsilon _L = - L\frac{{dI_{} }}{{dt}}</math> (L induktivitás ellenfesz, 32.6) || \varepsilon _L = - L\frac{{dI_{} }}{ {dt}} | ||
|- | |- | ||
| <math>M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }}</math> (kölcsönös induktivitás, 32.7) || M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }} | | <math>M = \frac{{N_2 \Phi _{B_2 } }}{{I_1 }}</math> (kölcsönös induktivitás, 32.7) || M = \frac{{N_2 \Phi _{B_2 } }}{ {I_1 }} | ||
|- | |- | ||
| <math>\varepsilon _1 = - M\frac{{dI_2 }}{{dt}}</math> (kölcsönös indukció fesz, 32.7) || \varepsilon _1 = - M\frac{{dI_2 }}{{dt}} | | <math>\varepsilon _1 = - M\frac{{dI_2 }}{{dt}}</math> (kölcsönös indukció fesz, 32.7) || \varepsilon _1 = - M\frac{ {dI_2 }}{ {dt}} | ||
|- | |- | ||
| <math>I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )</math> (áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) || I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} ) | | <math>I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )</math> (áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) || I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} ) | ||
16. sor: | 16. sor: | ||
| <math>U_L = \frac{1}{2}LI^2</math> (tekercsben tárol energia, 32.9) || U_L = \frac{1}{2}LI^2 | | <math>U_L = \frac{1}{2}LI^2</math> (tekercsben tárol energia, 32.9) || U_L = \frac{1}{2}LI^2 | ||
|- | |- | ||
| <math>u_B = \frac{{B^2 }}{{2\mu _0 }}</math> (mágneses tér energiasűrűsége, 32.9) || u_B = \frac{{B^2 }}{{2\mu _0 }} | | <math>u_B = \frac{{B^2 }}{{2\mu _0 }}</math> (mágneses tér energiasűrűsége, 32.9) || u_B = \frac{ {B^2 }}{ {2\mu _0 }} | ||
|- | |- | ||
| <math>{\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V</math> eredő mágneses momentum, a mágnesezettség vektora|| {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V | | <math>{\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V</math> eredő mágneses momentum, a mágnesezettség vektora|| {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V | ||
30. sor: | 30. sor: | ||
| <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok || \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } } | | <math>\oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }</math> Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok || \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } } | ||
|- | |- | ||
| <math>\frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}}</math> (hullámegyenletrendszer egyik tagja, 35.3, 35-20)|| \frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}} | | <math>\frac{{\partial E_y}}{{\partial x}} = - \frac{{\partial B_z}}{{\partial t}}</math> (hullámegyenletrendszer egyik tagja, 35.3, 35-20)|| \frac{ {\partial E_y}}{ {\partial x}} = - \frac{ {\partial B_z}}{ {\partial t}} | ||
|- | |- | ||
| <math>\frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}}</math> (hullámegyenletrendszer második tagja, 35.3, 35-18 || \frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}} | | <math>\frac{{\partial B_z}}{{\partial x}} = - \mu _0 \varepsilon _0 \frac{{\partial E_y}}{{\partial t}}</math> (hullámegyenletrendszer második tagja, 35.3, 35-18 || \frac{ {\partial B_z}}{ {\partial x}} = - \mu _0 \varepsilon _0 \frac{ {\partial E_y}}{ {\partial t}} | ||
|- | |- | ||
| <math>E_y = E_{y _0} \sin (kx - \omega t)</math> (elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) || E_y = E_{y0} \sin (kx - \omega t) | | <math>E_y = E_{y _0} \sin (kx - \omega t)</math> (elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) || E_y = E_{y0} \sin (kx - \omega t) | ||
|- | |- | ||
| <math>\frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c</math> (terjedési sebesség, 35.3, 35-27,35-29) || \frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c | | <math>\frac{{E_y}}{{B_z}} = \frac{\omega}{k} = c</math> (terjedési sebesség, 35.3, 35-27,35-29) || \frac{ {E_y}}{ {B_z}} = \frac{\omega}{k} = c | ||
|- | |- | ||
| <math>c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s</math> (a fénysebesség, mint állandó) || c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s | | <math>c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s</math> (a fénysebesség, mint állandó) || c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s | ||
|- | |- | ||
| <math>u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t)</math> (pillanatnyi energiasűrűség) || u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t) | | <math>u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{{2\mu _0}}B^2 (t)</math> (pillanatnyi energiasűrűség) || u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{ {2\mu _0}}B^2 (t) | ||
|- | |- | ||
| <math>{\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}}</math> (Poynting-vektor pillanatnyi értéke, 35.5, 35-41) || {\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}} | | <math>{\bf{S}} = \frac{1}{{\mu _0}}{\bf{E}} \times {\bf{B}}</math> (Poynting-vektor pillanatnyi értéke, 35.5, 35-41) || {\bf{S}} = \frac{1}{ {\mu _0}}{\bf{E}} \times {\bf{B}} | ||
|- | |- | ||
| <math>\frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}</math> (a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként <math>S_{atl} = \frac{1}{2\mu _0} E_{y0}B_{z0} </math> 35-44)|| \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}} | | <math>\frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}</math> (a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként <math>S_{atl} = \frac{1}{2\mu _0} E_{y0}B_{z0} </math> 35-44)|| \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}} | ||
62. sor: | 62. sor: | ||
| <math>n_1 \sin \theta _1 = n_2 \sin \theta _2</math> (Snellius fénytörési törvénye, 37.2, 37-5) || n_1 \sin \theta _1 = n_2 \sin \theta _2 | | <math>n_1 \sin \theta _1 = n_2 \sin \theta _2</math> (Snellius fénytörési törvénye, 37.2, 37-5) || n_1 \sin \theta _1 = n_2 \sin \theta _2 | ||
|- | |- | ||
| <math>D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}})</math><br/><math> D (dioptria - lencse erossege) = \frac{1}{fokusztavolsag} = </math> <math>=(relativ tor.mutato - 1)(\frac{1}{Lencse 1. gorbuleti sugara} + \frac{1}{Lencse 2. gorbuleti sugara} </math> (37.6,37.7, 37-18,37-21)|| D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}}) | | <math>D = \frac{1}{f} = (n - 1)(\frac{1}{{R_1}} + \frac{1}{{R_2}})</math><br/><math> D (dioptria - lencse erossege) = \frac{1}{fokusztavolsag} = </math> <math>=(relativ tor.mutato - 1)(\frac{1}{Lencse 1. gorbuleti sugara} + \frac{1}{Lencse 2. gorbuleti sugara} </math> (37.6,37.7, 37-18,37-21)|| D = \frac{1}{f} = (n - 1)(\frac{1}{ {R_1}} + \frac{1}{ {R_2}}) | ||
|- | |- | ||
| <math>I = 4I_0 \cos ^2 \frac{\phi}{2}</math> Intenzitás eloszlás a kétréses interferenciánál || I = 4I_0 \cos ^2 \frac{\phi}{2} | | <math>I = 4I_0 \cos ^2 \frac{\phi}{2}</math> Intenzitás eloszlás a kétréses interferenciánál || I = 4I_0 \cos ^2 \frac{\phi}{2} | ||
|- | |- | ||
| <math>\phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r</math> (fáziskülönbség a <math>\Delta r</math> útkülönbség miatt, 38.2,38-2) || \phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r | | <math>\phi = k\Delta r = \frac{{2\pi}}{\lambda}\Delta r</math> (fáziskülönbség a <math>\Delta r</math> útkülönbség miatt, 38.2,38-2) || \phi = k\Delta r = \frac{ {2\pi}}{\lambda}\Delta r | ||
|- | |- | ||
| <math>\lambda _n = \frac{{\lambda _a}}{n}</math> (hullámhossz n törésmutatójú közegben, 38.4) || \lambda _n = \frac{{\lambda _a}}{n} | | <math>\lambda _n = \frac{{\lambda _a}}{n}</math> (hullámhossz n törésmutatójú közegben, 38.4) || \lambda _n = \frac{ {\lambda _a}}{n} | ||
|- | |- | ||
| <math>I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}}</math> Intenzitáseloszlás diffrakciós rács esetén || I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}} | | <math>I = I_0 \frac{{\sin ^2 (N\phi /2)}}{{\sin ^2 (\phi /2)}}</math> Intenzitáseloszlás diffrakciós rács esetén || I = I_0 \frac{ {\sin ^2 (N\phi /2)}}{ {\sin ^2 (\phi /2)}} | ||
|- | |- | ||
| <math>\phi = kd\sin \theta</math> az előző képletben a <math>\phi</math> definíciója || \phi = kd\sin \theta | | <math>\phi = kd\sin \theta</math> az előző képletben a <math>\phi</math> definíciója || \phi = kd\sin \theta | ||
80. sor: | 80. sor: | ||
| <math>2d\cos \theta = m\lambda</math> (Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) || 2d\cos \theta = m\lambda | | <math>2d\cos \theta = m\lambda</math> (Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) || 2d\cos \theta = m\lambda | ||
|- | |- | ||
| <math>I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2</math> (Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8)|| I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2 | | <math>I = I_0 \left( {\frac{{\sin \alpha}}{\alpha}} \right)^2</math> (Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8)|| I = I_0 \left( {\frac{ {\sin \alpha}}{\alpha}} \right)^2 | ||
|- | |- | ||
| <math>\alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta</math> (az előző képletbeli <math> \alpha </math> definíciója, 39.2,39-9, '''a a rés szélessége!''' || \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta | | <math>\alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta</math> (az előző képletbeli <math> \alpha </math> definíciója, 39.2,39-9, '''a a rés szélessége!''' || \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta | ||
88. sor: | 88. sor: | ||
| <math>D\sin \theta = 1,22\lambda</math> (Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) || D\sin \theta = 1,22\lambda | | <math>D\sin \theta = 1,22\lambda</math> (Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) || D\sin \theta = 1,22\lambda | ||
|- | |- | ||
| <math>\theta _R = \frac{{1,22\lambda}}{D}</math> (Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) || \theta _R = \frac{{1,22\lambda}}{D} | | <math>\theta _R = \frac{{1,22\lambda}}{D}</math> (Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) || \theta _R = \frac{ {1,22\lambda}}{D} | ||
|- | |- | ||
| <math>D \equiv \frac{{d\theta}}{{d\lambda}}</math> (diszperzió, "mennyire jól szór", 39.4, 39-17) || D \equiv \frac{{d\theta}}{{d\lambda}} | | <math>D \equiv \frac{{d\theta}}{{d\lambda}}</math> (diszperzió, "mennyire jól szór", 39.4, 39-17) || D \equiv \frac{ {d\theta}}{ {d\lambda}} | ||
|- | |- | ||
| <math>R \equiv \frac{\lambda}{{\Delta \lambda}}</math> (felbontóképesség, 39.4) || R \equiv \frac{\lambda}{{\Delta \lambda}} | | <math>R \equiv \frac{\lambda}{{\Delta \lambda}}</math> (felbontóképesség, 39.4) || R \equiv \frac{\lambda}{ {\Delta \lambda}} | ||
|- | |- | ||
| <math>R = Nm</math> (rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) || R = Nm | | <math>R = Nm</math> (rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) || R = Nm | ||
98. sor: | 98. sor: | ||
| <math>2d\sin \phi = m\lambda</math> (Bragg-féle szórási feltétel, <math>\phi</math> itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) || 2d\sin \phi = m\lambda | | <math>2d\sin \phi = m\lambda</math> (Bragg-féle szórási feltétel, <math>\phi</math> itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) || 2d\sin \phi = m\lambda | ||
|- | |- | ||
| <math>\tan \theta _P = \frac{{n2}}{{n1}} = n</math> (Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) || \tan \theta _P = \frac{{n2}}{{n1}} = n | | <math>\tan \theta _P = \frac{{n2}}{{n1}} = n</math> (Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) || \tan \theta _P = \frac{ {n2}}{ {n1}} = n | ||
|- | |- | ||
| <math>I = I_0 \cos ^2 \theta</math> (Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) || I = I_0 \cos ^2 \theta | | <math>I = I_0 \cos ^2 \theta</math> (Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) || I = I_0 \cos ^2 \theta | ||
104. sor: | 104. sor: | ||
| <math>du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda</math> (Planck sugárzási törvénye, 42.4) || du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda | | <math>du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda</math> (Planck sugárzási törvénye, 42.4) || du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda | ||
|- | |- | ||
| <math>du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df</math> (Planck törvény frekvenciával) || du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df | | <math>du_f = \frac{{8\pi}}{c^3}\frac{{hf^3}}{{e^{hf/kT} - 1}}df</math> (Planck törvény frekvenciával) || du_f = \frac{ {8\pi}}{c^3}\frac{ {hf^3}}{{e^{hf/kT} - 1}}df | ||
|- | |- | ||
| <math>E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}}</math> (Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) || E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}} | | <math>E_n = - \frac{{mZ^2 e^4}}{{8\varepsilon _0 ^2 h^2 n^2}}</math> (Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) || E_n = - \frac{ {mZ^2 e^4}}{ {8\varepsilon _0 ^2 h^2 n^2}} | ||
|- | |- | ||
| <math>r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}}</math> (Bohr pályasugár a H atomban, 43.2, 43-6) || r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}} | | <math>r_n = \frac{{\varepsilon _0 h^2 n^2}}{{\pi mZe^2}}</math> (Bohr pályasugár a H atomban, 43.2, 43-6) || r_n = \frac{ {\varepsilon _0 h^2 n^2}}{ {\pi mZe^2}} | ||
|- | |- | ||
| <math>p = \frac{h}{\lambda}</math> (foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) || p = \frac{h}{\lambda} | | <math>p = \frac{h}{\lambda}</math> (foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) || p = \frac{h}{\lambda} | ||
114. sor: | 114. sor: | ||
| <math>hf = K_{\max} + W_0</math> (Einstein fényelektr. egyenlete, 42.5, 42-13) || hf = K_{\max} + W_0 | | <math>hf = K_{\max} + W_0</math> (Einstein fényelektr. egyenlete, 42.5, 42-13) || hf = K_{\max} + W_0 | ||
|- | |- | ||
| <math>\lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta )</math> (Compton eltolódás, 42.6,42-18) || \lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta ) | | <math>\lambda ' - \lambda _0 = \frac{h}{{mc}}(1 - \cos \theta )</math> (Compton eltolódás, 42.6,42-18) || \lambda ' - \lambda _0 = \frac{h}{ {mc}}(1 - \cos \theta ) | ||
|- | |- | ||
| <math>E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2</math> <br>(dobozba zárt részecske energiaállapotai, 43.6, 43-27) || E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2 | | <math>E_n = \frac{{\hbar^2 \pi ^2}}{{2mD^2}}n^2</math> <br>(dobozba zárt részecske energiaállapotai, 43.6, 43-27) || E_n = \frac{ {\hbar^2 \pi ^2}}{ {2mD^2}}n^2 | ||
|- | |- | ||
| <math>\Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x</math> (dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) || \Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x | | <math>\Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{{n\pi}}{D}x</math> (dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) || \Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{ {n\pi}}{D}x | ||
|- | |- | ||
| <math>\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}</math> <br>(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal) || \Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2} | | <math>\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}</math> <br>(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal) || \Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2} | ||
128. sor: | 128. sor: | ||
| <math>n(E) = g(E)f(E,T)</math> || n(E) = g(E)f(E,T) | | <math>n(E) = g(E)f(E,T)</math> || n(E) = g(E)f(E,T) | ||
|- | |- | ||
| <math>f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}}</math> Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) || f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}} | | <math>f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} + 1} \right]}}</math> Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) || f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} + 1} \right]}} | ||
|- | |- | ||
| <math>f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}}</math> Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) || f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}} | | <math>f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{{\varepsilon - \varepsilon _F}}{{kT}}} \right\} - 1} \right]}}</math> Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) || f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} - 1} \right]}} | ||
|- | |- | ||
| <math>E = E_0 (n_x^2 + n_y^2 + n_z^2 )</math> a részecske energiaállapota térbeli potenciáldobozban, alapállapot <math> n_x=1 n_y=1 n_z=1 </math>|| E = E_0 (n_x^2 + n_y^2 + n_z^2 ) | | <math>E = E_0 (n_x^2 + n_y^2 + n_z^2 )</math> a részecske energiaállapota térbeli potenciáldobozban, alapállapot <math> n_x=1 n_y=1 n_z=1 </math>|| E = E_0 (n_x^2 + n_y^2 + n_z^2 ) | ||
142. sor: | 142. sor: | ||
| <math>\Delta L_z \Delta \phi \ge \hbar/2</math> (határozatlansági reláció, 43.8) || \Delta L_z \Delta \phi \ge \hbar/2 | | <math>\Delta L_z \Delta \phi \ge \hbar/2</math> (határozatlansági reláció, 43.8) || \Delta L_z \Delta \phi \ge \hbar/2 | ||
|- | |- | ||
| <math>(\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l</math> (mágn.dip.moment. z kompon, 44.2) || (\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l | | <math>(\mu _l )_z = - \left( {\frac{{e\hbar}}{{2m}}} \right)m_l</math> (mágn.dip.moment. z kompon, 44.2) || (\mu _l )_z = - \left( {\frac{ {e\hbar}}{ {2m}}} \right)m_l | ||
|- | |- | ||
| <math>S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin-impulzusmom.z irány, 44.2) || S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} | | <math>S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin-impulzusmom.z irány, 44.2) || S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} | ||
148. sor: | 148. sor: | ||
| <math>S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin impulzusmom., 44.2) || S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} | | <math>S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}</math> (spin impulzusmom., 44.2) || S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} | ||
|- | |- | ||
| <math>(\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s</math> (spin-mágnesesmom. z komp, 44.2) || (\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s | | <math>(\mu _s )_z = - \left( {\frac{{e\hbar}}{m}} \right)m_s</math> (spin-mágnesesmom. z komp, 44.2) || (\mu _s )_z = - \left( {\frac{ {e\hbar}}{m}} \right)m_s | ||
|- | |- | ||
| <math> J = \hbar\sqrt {j(j + 1)}</math> (teljes impulzusmomentum, 44.4) || J = \hbar\sqrt {j(j + 1)} | | <math> J = \hbar\sqrt {j(j + 1)}</math> (teljes impulzusmomentum, 44.4) || J = \hbar\sqrt {j(j + 1)} | ||
160. sor: | 160. sor: | ||
| <math>N = N_0 e^{ - n\sigma x}</math> (azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, <math>\sigma</math> - hatáskeresztmetszet, <math>N_0</math> - összes részecske (ami a céltárgy felé tart), 45.6,45-35) || N = N_0 e^{ - n\sigma x} | | <math>N = N_0 e^{ - n\sigma x}</math> (azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, <math>\sigma</math> - hatáskeresztmetszet, <math>N_0</math> - összes részecske (ami a céltárgy felé tart), 45.6,45-35) || N = N_0 e^{ - n\sigma x} | ||
|- | |- | ||
| <math>KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}</math> (az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) || KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4} | | <math>KE = a_1 A - a_2 A^{2/3} - a_3 \frac{{Z^2}}{{A^{1/3}}} - a_4 \frac{{(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}</math> (az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) || KE = a_1 A - a_2 A^{2/3} - a_3 \frac{ {Z^2}}{{A^{1/3}}} - a_4 \frac{ {(N - Z)^2}}{A} \pm a_5 A^{ - 3/4} | ||
|} | |} | ||
A lap jelenlegi, 2013. szeptember 25., 23:15-kori változata
(mágneses térben mozgó töltésre ható erő 30.5) | {\bf{F}} = q({\bf{v}} \times {\bf{B}}) |
(mágneses fluxus, 30.8) | \Phi _B = \int {\bf{B}} \cdot d{\bf{A}} |
(önindukció, 32.6) | L = \frac{ {N\Phi _B }}{I} |
(L induktivitás ellenfesz, 32.6) | \varepsilon _L = - L\frac{{dI_{} }}{ {dt}} |
(kölcsönös induktivitás, 32.7) | M = \frac{{N_2 \Phi _{B_2 } }}{ {I_1 }} |
(kölcsönös indukció fesz, 32.7) | \varepsilon _1 = - M\frac{ {dI_2 }}{ {dt}} |
(áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) | I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} ) |
(tekercsben tárol energia, 32.9) | U_L = \frac{1}{2}LI^2 |
(mágneses tér energiasűrűsége, 32.9) | u_B = \frac{ {B^2 }}{ {2\mu _0 }} |
eredő mágneses momentum, a mágnesezettség vektora | {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V |
(teljes fluxussűrűség, 33.3, H mágneses térerősség) | {\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}}) |
(mágnesezettség = mágneses szuszceptibilitás * mágneses erőtér) | {\bf{M}} = \chi {\bf{H}} |
(mágneses fluxussűrűség = (1+mágneses szuszceptibilitás)*mágneses térerősség, 33.3, 33-2) | {\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}} |
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok | \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} } |
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok | \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } } |
(hullámegyenletrendszer egyik tagja, 35.3, 35-20) | \frac{ {\partial E_y}}{ {\partial x}} = - \frac{ {\partial B_z}}{ {\partial t}} |
(hullámegyenletrendszer második tagja, 35.3, 35-18 | \frac{ {\partial B_z}}{ {\partial x}} = - \mu _0 \varepsilon _0 \frac{ {\partial E_y}}{ {\partial t}} |
(elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) | E_y = E_{y0} \sin (kx - \omega t) |
(terjedési sebesség, 35.3, 35-27,35-29) | \frac{ {E_y}}{ {B_z}} = \frac{\omega}{k} = c |
(a fénysebesség, mint állandó) | c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s |
(pillanatnyi energiasűrűség) | u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{ {2\mu _0}}B^2 (t) |
(Poynting-vektor pillanatnyi értéke, 35.5, 35-41) | {\bf{S}} = \frac{1}{ {\mu _0}}{\bf{E}} \times {\bf{B}} |
(a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként 35-44) | \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}} |
(hullám intenzitása, 35.5) | I = S_{atl} = u_{atl} c |
(Összefüggés a relativisztikus energia és az impulzus között, 41.12,41-22) | E^2 - (pc)^2 = - (mc)^2 |
(U energiájú hullám p impulzust szállít, 35.6) | U = pc |
(sugárnyomás - teljes abszorció, 35.6) | \frac{F}{A} = \frac{{S_{atl}}}{c} |
(sugárnyomás - teljes reflexió, 35.6) | \frac{F}{A} = \frac{{2S_{atl}}}{c} |
(törésmutató = fénysebesség vákuumban/fénysebesség közegben), 37.2, 37-1) | n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}} |
(Az optika Fermat elve - lényegében azt fejezi ki, hogy az optikai útvonalra vett integrálja az n-nek (törésmutatónak) szélsőérték; annyit még tudni kell hozzá, hogy ez a szélsőérték a minimum, 36.4) | \int n _{} ds = extremum |
(Snellius fénytörési törvénye, 37.2, 37-5) | n_1 \sin \theta _1 = n_2 \sin \theta _2 |
(37.6,37.7, 37-18,37-21) |
D = \frac{1}{f} = (n - 1)(\frac{1}{ {R_1}} + \frac{1}{ {R_2}}) |
Intenzitás eloszlás a kétréses interferenciánál | I = 4I_0 \cos ^2 \frac{\phi}{2} |
(fáziskülönbség a útkülönbség miatt, 38.2,38-2) | \phi = k\Delta r = \frac{ {2\pi}}{\lambda}\Delta r |
(hullámhossz n törésmutatójú közegben, 38.4) | \lambda _n = \frac{ {\lambda _a}}{n} |
Intenzitáseloszlás diffrakciós rács esetén | I = I_0 \frac{ {\sin ^2 (N\phi /2)}}{ {\sin ^2 (\phi /2)}} |
az előző képletben a definíciója | \phi = kd\sin \theta |
(Két/többréses interferencia (fő)maximumok feltétele, 38.2,38-8,38.3,38-14) | m\lambda = d\sin \theta |
(Newton gyűrűk sugara, R - konvex lencse sugara, m = 1,2,3... (m-edik N.Gyűr.) 38.5, 38-18) | r_m = \sqrt {Rm\lambda} |
(Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) | 2d\cos \theta = m\lambda |
(Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8) | I = I_0 \left( {\frac{ {\sin \alpha}}{\alpha}} \right)^2 |
(az előző képletbeli definíciója, 39.2,39-9, a a rés szélessége! | \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta |
(Egyréses Fraunhofer-diffrakció minimumai, 39.2,39-10) | m\lambda = d\sin \theta |
(Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) | D\sin \theta = 1,22\lambda |
(Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) | \theta _R = \frac{ {1,22\lambda}}{D} |
(diszperzió, "mennyire jól szór", 39.4, 39-17) | D \equiv \frac{ {d\theta}}{ {d\lambda}} |
(felbontóképesség, 39.4) | R \equiv \frac{\lambda}{ {\Delta \lambda}} |
(rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) | R = Nm |
(Bragg-féle szórási feltétel, itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) | 2d\sin \phi = m\lambda |
(Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) | \tan \theta _P = \frac{ {n2}}{ {n1}} = n |
(Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) | I = I_0 \cos ^2 \theta |
(Planck sugárzási törvénye, 42.4) | du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda |
(Planck törvény frekvenciával) | du_f = \frac{ {8\pi}}{c^3}\frac{ {hf^3}}{{e^{hf/kT} - 1}}df |
(Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) | E_n = - \frac{ {mZ^2 e^4}}{ {8\varepsilon _0 ^2 h^2 n^2}} |
(Bohr pályasugár a H atomban, 43.2, 43-6) | r_n = \frac{ {\varepsilon _0 h^2 n^2}}{ {\pi mZe^2}} |
(foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) | p = \frac{h}{\lambda} |
(Einstein fényelektr. egyenlete, 42.5, 42-13) | hf = K_{\max} + W_0 |
(Compton eltolódás, 42.6,42-18) | \lambda ' - \lambda _0 = \frac{h}{ {mc}}(1 - \cos \theta ) |
(dobozba zárt részecske energiaállapotai, 43.6, 43-27) |
E_n = \frac{ {\hbar^2 \pi ^2}}{ {2mD^2}}n^2 |
(dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) | \Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{ {n\pi}}{D}x |
(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal) |
\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2} |
(határozatlansági reláció, 43.8) | \Delta p_x \Delta x \ge \frac{{}}{2} |
(határozatlansági reláció, 43.8) | \Delta E\Delta t \ge \frac{{}}{2} |
n(E) = g(E)f(E,T) | |
Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) | f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} + 1} \right]}} |
Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) | f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} - 1} \right]}} |
a részecske energiaállapota térbeli potenciáldobozban, alapállapot | E = E_0 (n_x^2 + n_y^2 + n_z^2 ) |
n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon \cdot f(\varepsilon ,T) | |
(pálya impulzusmomentuma, 44.2) | L = \hbar\sqrt {l(l + 1)} |
(impulzusmomentum z-irányú kompon., 44.2) | L_z = m_l\hbar |
(határozatlansági reláció, 43.8) | \Delta L_z \Delta \phi \ge \hbar/2 |
(mágn.dip.moment. z kompon, 44.2) | (\mu _l )_z = - \left( {\frac{ {e\hbar}}{ {2m}}} \right)m_l |
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin-impulzusmom.z irány, 44.2) | S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} |
Értelmezés sikertelen (ismeretlen „\raise” függvény): {\displaystyle S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin impulzusmom., 44.2) | S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} |
(spin-mágnesesmom. z komp, 44.2) | (\mu _s )_z = - \left( {\frac{ {e\hbar}}{m}} \right)m_s |
(teljes impulzusmomentum, 44.4) | J = \hbar\sqrt {j(j + 1)} |
(teljes impulzusmomentum z komp, 44.4) | J_Z = m_j\hbar |
(atommag R sugara, A a tömegszám, R0 egy állandó 45.2,45-2) | R = R_0 A^{1/3} |
(radioaktív bomlás törvénye, T1/2 felezési idő 45.4,45-9) | N = N_0 e^{ - \lambda t} |
(azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, - hatáskeresztmetszet, - összes részecske (ami a céltárgy felé tart), 45.6,45-35) | N = N_0 e^{ - n\sigma x} |
(az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) | KE = a_1 A - a_2 A^{2/3} - a_3 \frac{ {Z^2}}{{A^{1/3}}} - a_4 \frac{ {(N - Z)^2}}{A} \pm a_5 A^{ - 3/4} |
-- Subi - 2007.01.14.
-- Cipka - 2010.01.12.