Fizika 2 - Vizsgaképlettár

A VIK Wikiből
(mágneses térben mozgó töltésre ható erő 30.5) {\bf{F}} = q({\bf{v}} \times {\bf{B}})
(mágneses fluxus, 30.8) \Phi _B = \int {\bf{B}} \cdot d{\bf{A}}
(önindukció, 32.6) L = \frac{ {N\Phi _B }}{I}
(L induktivitás ellenfesz, 32.6) \varepsilon _L = - L\frac{{dI_{} }}{ {dt}}
(kölcsönös induktivitás, 32.7) M = \frac{{N_2 \Phi _{B_2 } }}{ {I_1 }}
(kölcsönös indukció fesz, 32.7) \varepsilon _1 = - M\frac{ {dI_2 }}{ {dt}}
(áramerősség növekedése tekercsel az áramkörben, 32.8,32-26) I(t) = \frac{\varepsilon }{R}(1 - e^{ - (R/L)t} )
(tekercsben tárol energia, 32.9) U_L = \frac{1}{2}LI^2
(mágneses tér energiasűrűsége, 32.9) u_B = \frac{ {B^2 }}{ {2\mu _0 }}
eredő mágneses momentum, a mágnesezettség vektora {\bf{M}} = (\sum\limits_i^{} {{\bf{m}}_i } )/V
(teljes fluxussűrűség, 33.3, H mágneses térerősség) {\bf{B}} = \mu _0 ({\bf{H}} + {\bf{M}})
(mágnesezettség = mágneses szuszceptibilitás * mágneses erőtér) {\bf{M}} = \chi {\bf{H}}
(mágneses fluxussűrűség = (1+mágneses szuszceptibilitás)*mágneses térerősség, 33.3, 33-2) {\bf{B}} = \mu _0 (1 + \chi ){\bf{H}} = \mu _0 \mu _r {\bf{H}}
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \int\limits_A^{} {{\bf{j}} \cdot d{\bf{A}}} }
Gerjesztési törvény, mágneses térerősség zárt görbére vett integrálja = vezetési áramok \oint\limits_L {{\bf{H}} \cdot d{\bf{s}} = \sum\limits_i^{} {I_i } }
(hullámegyenletrendszer egyik tagja, 35.3, 35-20) \frac{ {\partial E_y}}{ {\partial x}} = - \frac{ {\partial B_z}}{ {\partial t}}
(hullámegyenletrendszer második tagja, 35.3, 35-18 \frac{ {\partial B_z}}{ {\partial x}} = - \mu _0 \varepsilon _0 \frac{ {\partial E_y}}{ {\partial t}}
(elektromos térerősségenk síkhullámként terjedő Ey komponense, 35.3, 35-26) E_y = E_{y0} \sin (kx - \omega t)
(terjedési sebesség, 35.3, 35-27,35-29) \frac{ {E_y}}{ {B_z}} = \frac{\omega}{k} = c
(a fénysebesség, mint állandó) c = \frac{1}{{\sqrt {\mu _0 \varepsilon _0}}} = 2,99792458 \times 10^8 m/s
(pillanatnyi energiasűrűség) u(t) = \frac{1}{2}\varepsilon _0 E^2 (t) + \frac{1}{ {2\mu _0}}B^2 (t)
(Poynting-vektor pillanatnyi értéke, 35.5, 35-41) {\bf{S}} = \frac{1}{ {\mu _0}}{\bf{E}} \times {\bf{B}}
(a Poynting vektor átlagának kiszámításánál fontos, 35.5,35-43, egyébként 35-44) \frac{1}{T}\int\limits_0^T {\sin ^2 (kx - \omega t)dt = \frac{1}{2}}
(hullám intenzitása, 35.5) I = S_{atl} = u_{atl} c
(Összefüggés a relativisztikus energia és az impulzus között, 41.12,41-22) E^2 - (pc)^2 = - (mc)^2
(U energiájú hullám p impulzust szállít, 35.6) U = pc
(sugárnyomás - teljes abszorció, 35.6) \frac{F}{A} = \frac{{S_{atl}}}{c}
(sugárnyomás - teljes reflexió, 35.6) \frac{F}{A} = \frac{{2S_{atl}}}{c}
(törésmutató = fénysebesség vákuumban/fénysebesség közegben), 37.2, 37-1) n = \frac{c}{v} = \frac{c}{{\sqrt {\varepsilon _r}}}
(Az optika Fermat elve - lényegében azt fejezi ki, hogy az optikai útvonalra vett integrálja az n-nek (törésmutatónak) szélsőérték; annyit még tudni kell hozzá, hogy ez a szélsőérték a minimum, 36.4) \int n _{} ds = extremum
(Snellius fénytörési törvénye, 37.2, 37-5) n_1 \sin \theta _1 = n_2 \sin \theta _2

(37.6,37.7, 37-18,37-21)
D = \frac{1}{f} = (n - 1)(\frac{1}{ {R_1}} + \frac{1}{ {R_2}})
Intenzitás eloszlás a kétréses interferenciánál I = 4I_0 \cos ^2 \frac{\phi}{2}
(fáziskülönbség a útkülönbség miatt, 38.2,38-2) \phi = k\Delta r = \frac{ {2\pi}}{\lambda}\Delta r
(hullámhossz n törésmutatójú közegben, 38.4) \lambda _n = \frac{ {\lambda _a}}{n}
Intenzitáseloszlás diffrakciós rács esetén I = I_0 \frac{ {\sin ^2 (N\phi /2)}}{ {\sin ^2 (\phi /2)}}
az előző képletben a definíciója \phi = kd\sin \theta
(Két/többréses interferencia (fő)maximumok feltétele, 38.2,38-8,38.3,38-14) m\lambda = d\sin \theta
(Newton gyűrűk sugara, R - konvex lencse sugara, m = 1,2,3... (m-edik N.Gyűr.) 38.5, 38-18) r_m = \sqrt {Rm\lambda}
(Michelson féle interferométerben a körgyűrűk - maximumok - képződésének feltétele, 38.5) 2d\cos \theta = m\lambda
(Fraunhofer diffrakció intenzitáseloszlása (39.2,39-8) I = I_0 \left( {\frac{ {\sin \alpha}}{\alpha}} \right)^2
(az előző képletbeli definíciója, 39.2,39-9, a a rés szélessége! \alpha = \frac{\phi}{2} = \left( {\frac{\pi}{\lambda}} \right)a\sin \theta
(Egyréses Fraunhofer-diffrakció minimumai, 39.2,39-10) m\lambda = d\sin \theta
(Fraunhofer-diffrakció minimuma köralakú nyílás esetén, 39.3,39-12) D\sin \theta = 1,22\lambda
(Rayleigh kritériuma, minimális felbontási szög, köralakú apertúránál, 39.3,39-13) \theta _R = \frac{ {1,22\lambda}}{D}
(diszperzió, "mennyire jól szór", 39.4, 39-17) D \equiv \frac{ {d\theta}}{ {d\lambda}}
(felbontóképesség, 39.4) R \equiv \frac{\lambda}{ {\Delta \lambda}}
(rács felbontóképessége, N összes rések száma, m elhajlási kép rendszáma, 39.4,39-23) R = Nm
(Bragg-féle szórási feltétel, itt az atomsíkkal bezárt szög!, d atomsíkok távolsága 39.5,39-24) 2d\sin \phi = m\lambda
(Brewster törvénye, dielektrikum határán visszaverődő fény 100%-os polarizáltságának feltétele 40.3,40-2) \tan \theta _P = \frac{ {n2}}{ {n1}} = n
(Malus törvénye az egymás után helyezett polárszűrőkre, 40.2,40-1) I = I_0 \cos ^2 \theta
(Planck sugárzási törvénye, 42.4) du_\lambda = \frac{{8\pi hc\lambda ^{ - 5}}}{{e^{hc/\lambda kT} - 1}}d\lambda
(Planck törvény frekvenciával) du_f = \frac{ {8\pi}}{c^3}\frac{ {hf^3}}{{e^{hf/kT} - 1}}df
(Hidrogén-atom Bohr féle energia állapotai, 43.3, 43-9) E_n = - \frac{ {mZ^2 e^4}}{ {8\varepsilon _0 ^2 h^2 n^2}}
(Bohr pályasugár a H atomban, 43.2, 43-6) r_n = \frac{ {\varepsilon _0 h^2 n^2}}{ {\pi mZe^2}}
(foton impulzusa, 42.6, 42-16 vagy a p impulzusú részecske de Broglie féle hullámhossza, 43.4, 43-17) p = \frac{h}{\lambda}
(Einstein fényelektr. egyenlete, 42.5, 42-13) hf = K_{\max} + W_0
(Compton eltolódás, 42.6,42-18) \lambda ' - \lambda _0 = \frac{h}{ {mc}}(1 - \cos \theta )

(dobozba zárt részecske energiaállapotai, 43.6, 43-27)
E_n = \frac{ {\hbar^2 \pi ^2}}{ {2mD^2}}n^2
(dobozba zárt részecske normált hullámfüggvénye, 43.6,43-35) \Psi (x) = \sqrt {\frac{2}{D}} \sin \frac{ {n\pi}}{D}x

(szórás négyzet négyzetgyöke (vagy simán csak szórás), OL 32.oldal)
\Delta x = \sqrt {\left\langle {\left( {x - \left\langle x \right\rangle} \right)^2} \right\rangle} = \sqrt {\left\langle {x^2} \right\rangle - \left\langle x \right\rangle ^2}
(határozatlansági reláció, 43.8) \Delta p_x \Delta x \ge \frac{{}}{2}
(határozatlansági reláció, 43.8) \Delta E\Delta t \ge \frac{{}}{2}
n(E) = g(E)f(E,T)
Fermi-Dirac eloszlasfuggveny (1/2 spinu reszecskekre) f^{FD} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} + 1} \right]}}
Bose-Einstein eloszlasfuggveny (egesz spinu reszecskekre) f^{BE} (\varepsilon ,T) = \frac{1}{{\left[ {\exp \left\{ {\frac{ {\varepsilon - \varepsilon _F}}{ {kT}}} \right\} - 1} \right]}}
a részecske energiaállapota térbeli potenciáldobozban, alapállapot E = E_0 (n_x^2 + n_y^2 + n_z^2 )
n(\varepsilon )d\varepsilon = a \cdot \sqrt \varepsilon \cdot f(\varepsilon ,T)
(pálya impulzusmomentuma, 44.2) L = \hbar\sqrt {l(l + 1)}
(impulzusmomentum z-irányú kompon., 44.2) L_z = m_l\hbar
(határozatlansági reláció, 43.8) \Delta L_z \Delta \phi \ge \hbar/2
(mágn.dip.moment. z kompon, 44.2) (\mu _l )_z = - \left( {\frac{ {e\hbar}}{ {2m}}} \right)m_l
Értelmezés sikertelen (ismeretlen „\raise” függvény): {\displaystyle S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin-impulzusmom.z irány, 44.2) S_z = m_s\hbar, m_s = \pm {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
Értelmezés sikertelen (ismeretlen „\raise” függvény): {\displaystyle S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} (spin impulzusmom., 44.2) S = \hbar\sqrt {s(s + 1)},s = {\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}
(spin-mágnesesmom. z komp, 44.2) (\mu _s )_z = - \left( {\frac{ {e\hbar}}{m}} \right)m_s
(teljes impulzusmomentum, 44.4) J = \hbar\sqrt {j(j + 1)}
(teljes impulzusmomentum z komp, 44.4) J_Z = m_j\hbar
(atommag R sugara, A a tömegszám, R0 egy állandó 45.2,45-2) R = R_0 A^{1/3}
(radioaktív bomlás törvénye, T1/2 felezési idő 45.4,45-9) N = N_0 e^{ - \lambda t}
(azoknak a részecskéknek a száma, amelyek a céltárgyba x mélységig kölcsönhatás nélkül hatolnak be, n - atommagok száma egységnyi térfogatban, - hatáskeresztmetszet, - összes részecske (ami a céltárgy felé tart), 45.6,45-35) N = N_0 e^{ - n\sigma x}
(az atommagok kötési energiája a cseppmodell szerint - a tagok: (térfogati energia) + (felületi energia) + (Coulomb energia) + (Pauli energia) + (anti-Hund energia), ahol A (tömegszám) = Z (rendszám, protonszám) + N (neutronszám) KE = a_1 A - a_2 A^{2/3} - a_3 \frac{ {Z^2}}{{A^{1/3}}} - a_4 \frac{ {(N - Z)^2}}{A} \pm a_5 A^{ - 3/4}

Latex példák wikin

-- Subi - 2007.01.14.

-- Cipka - 2010.01.12.