Szerkesztő:Nagy Vilmos/Jelek Gyakorlatjegyzet - 2017 (ősz)

A VIK Wikiből
< Szerkesztő:Nagy Vilmos
A lap korábbi változatát látod, amilyen Nagy Vilmos (vitalap | szerkesztései) 2017. szeptember 5., 11:05-kor történt szerkesztése után volt. (→‎1. Gyakorlat)
A nyomtatható változat már nem támogatott, és hibásan jelenhet meg. Kérjük, frissítsd a böngésződ könyvjelzőit, és használd a böngésző alapértelmezett nyomtatás funkcióját.

A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.

Ha a félév végéig sikerül rendesen csinálnom (igyekszem :-)), s legalább az első ZHig (~hetedeik hét) le van tisztázva az anyag, akkor közkincsé teszem, s mehet a Rendszerelmélet lap alá. Addig viszont szeretném a személyes játszóteremnek meghagyni (nemhiába szerkesztői subpage ez), s bármit hezitálás nélkül visszavonok, ami nem tetszik. Ha hibát találsz, vagy kérdésed van, a Vitalapon állok rendelkezésre. (vagy a vilmos.nagy@outlook.com email címen)

Ez az oldal a gyakorlaton elhangzott feladatokat, s azok megoldásait tartalmazza - már, amit felfogtam belőle. Az előadásjegyzetemet erre találod: Szerkesztő:Nagy_Vilmos/Jelek_Előadásjegyzet_-_2017_(ősz)

1. Gyakorlat

Periodicitás vizsgálata

Diszkrét idejű jelek

Adott Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(\varphi k)} . Hogyan számoljuk ki, hogy periodikus-e?

Felírjuk az periodicitás definícióját, majd számolunk:

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \cos(\varphi k) = \cos(\varphi \cdot (k + L))}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi k + 2n\pi = \varphi(k+L)}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = \varphi L}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L = \frac{2n\pi}{\varphi}}

Az így kapott L értéknek definíció szerint egész számnak kell lennie. Három eset lehet a számolás végén:

  • Az L egész. Örülünk, a jel periodikus.
  • Az L racionális tört. Szorozzuk fel, hogy egész legyen (erre van a képletben az n), s örülünk, a jel periodikus.
  • Az L irracionális tört. Ebből sehogy nem lesz egész, a jel nem periodikus.

Általánosságban a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = \varphi L} összefüggést érdemes megjegyezni, majd abból számolni.

Feladatok

Peridokusak-e az alábbi jelek? Amennyiben igen, mi a periódusideje?

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(3k)}

Nem.

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = \varphi L}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi = 3}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = 3L}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L = \frac{2n\pi}{3}}

Erre semmilyen olyan n-t nem tudunk mondani, hogy L egész legyen.

Kis számolással beláthatjuk, hogy a diszkrét idejű jelek csak akkor lesznek periodikusak, ha a k Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \pi} racionális többszöröse.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(k\frac{\pi}{17} + \frac{\pi}{3})}

Igen.

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(k\frac{\pi}{17} + \frac{\pi}{3})}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = \varphi L}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi = \frac{\pi}{17}}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n\pi = \frac{\pi}{17}L}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 = \frac{L}{17}}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L = 2 \cdot 17 = 34}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(k\frac{2}{5} + \frac{\pi}{2})}

Nem.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(k\frac{3\pi}{19} + \frac{\pi}{2})}

Igen. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L = 38}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \sin(k\frac{5}{13} + \frac{\pi}{4})}

Nem.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \sin(k\frac{5\pi}{13} + \frac{\pi}{4})}

Igen. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L = 26}

Folytonos idejű jelek

Folytonos idejű jelek periodicitását ugyanúgy vizsgáljuk, mint a diszkrét idejű jeleknél. Az egyetlen különbség, hogy a folytonos idejű jeleknél a periódusidő nem szükségszerűen egész, hanem lehet racionális szám is: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T \in \mathbb{R}} .

Feladatok

Peridokusak-e az alábbi jelek? Amennyiben igen, mi a periódusideje?

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t) = 5 \cos(2t) + 3 \sin(4t) + 10}

Ilyen jeleknél, amik több periodikus jel szuperpozíciója, az egyes részeinek periódusidejét számoljuk ki, majd ezen periódusidők legkisebb közös többszöröse lesz a szuperponált jel periódusideje.

Az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t)} jel három jel szuperpozíciója. Ezek külön, külön:

  • 1. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 5 \cos(2t)}
  • 2. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3 \sin(4t)}
  • 3. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 10}

Ebből az utolsó triviálisan periodikus, periódusideje tulajdonképpen bármelyik racionális szám. A másik kettőről meg megtanultuk középiskolában, hogy periodikusak, periódusidejük:

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_1 = \pi}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_2 = \frac{\pi}{2}}

Ezek alapján az eredeti jel periodikus, periódusideje: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T = \pi} .

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t) = 4 \cos(4t) + 5 \sin(7t)}

A fentiek alapján periodikus, periódusideje: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T = 2\pi} .

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_1 = \frac{\pi}{2}}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_2 = \frac{2\pi}{7}}

Rendszer válaszának kiszámolása lépésenként

Diszkrét idejű jelek

Adott a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] + 0.8y[k-1] = 3u[k] + 4u[k-1]} öszefüggés. Továbbá tudjuk, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[-1] = 5} , s Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[k] = 2\cdot\epsilon[k]} . Számoljuk ki az y értékeit különböző k értékekre.

Az előadásvázlatban van hasonló példa. Az egészet Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = ... } -ra rendezve kapunk egy egyszerű összefüggést. Mivel tudjuk az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[-1]} -et, így az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[0]} triviálisan számolható. Ezek után a következő, majd a következő, majd az azt követő y érték is. Valahogy így:

k u y
-1 0 5
0 2 2
1 2 12.4
2 2 ...

A gyakorlaton ezt még felrajzoltuk egy grafikonra. Két dolgot jegyeztünk meg:

  • A diszkrét értékeket nem kötjük össze!
  • A tengelyek legyenek elnevezve!

A fenti módszer hátránya, hogyha szeretném tudni a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[538]} értékét, akkor ahhoz ki kell számolni a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[537]} értékét, és így tovább összes korábbi értéket is.

Folytonos idejű jelek

Folytonos idejű jelek is lehetnének hasonlóan számolhatóak, de ott a megfelelő lépésköz sokkal nehezebben meghatározható (gondolj a Taylor polinommal való közelítésre).