Szerkesztő:Nagy Vilmos/Jelek Gyakorlatjegyzet - 2017 (ősz)

A VIK Wikiből
A lap korábbi változatát látod, amilyen Nagy Vilmos (vitalap | szerkesztései) 2017. szeptember 5., 09:30-kor történt szerkesztése után volt. (Első gyakorlat anyaga nagyrészt felskiccelve.)

A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.

Ha a félév végéig sikerül rendesen csinálnom (igyekszem :-)), s legalább az első ZHig (~hetedeik hét) le van tisztázva az anyag, akkor közkincsé teszem, s mehet a Rendszerelmélet lap alá. Addig viszont szeretném a személyes játszóteremnek meghagyni (nemhiába szerkesztői subpage ez), s bármit hezitálás nélkül visszavonok, ami nem tetszik. Ha hibát találsz, vagy kérdésed van, a Vitalapon állok rendelkezésre. (vagy a vilmos.nagy@outlook.com email címen)

Ez az oldal a gyakorlaton elhangzott feladatokat, s azok megoldásait tartalmazza - már, amit felfogtam belőle. Az előadásjegyzetemet erre találod: Szerkesztő:Nagy_Vilmos/Jelek_Előadásjegyzet_-_2017_(ősz)

1. Gyakorlat

Periodicitás vizsgálata

Diszkrét idejű jelek

Adott . Hogyan számoljuk ki, hogy periodikus-e?

Felírjuk az periodicitás definícióját, majd számolunk: Értelmezés sikertelen (ismeretlen „\newline” függvény): {\displaystyle \cos(\varphi k) = \cos(\varphi \cdot (k + L)) \newline \varphi k + 2n\pi = \varphi(k+L) \newline 2n\pi = \varphi L \newline L = \frac{2n\pi}{\varphi} }

Az így kapott L értéknek definíció szerint egész számnak kell lennie. Három eset lehet a számolás végén:

  • Az L egész. Örülünk, a jel periodikus.
  • Az L racionális tört. Szorozzuk fel, hogy egész legyen (erre van a képletben az n), s örülünk, a jel periodikus.
  • Az L irracionális tört. Ebből sehogy nem lesz egész, a jel nem periodikus.

Általánosságban a összefüggést érdemes megjegyezni, majd abból számolni.

Feladatok

Peridokusak-e az alábbi jelek? Amennyiben igen, mi a periódusideje?

Nem. Értelmezés sikertelen (ismeretlen „\newline” függvény): {\displaystyle 2n\pi = \varphi L \newline \varphi = 3 \newline 2n\pi = 3L \newline L = \frac{2n\pi}{3} } Erre semmilyen olyan n-t nem tudunk mondani, hogy L egész legyen.

Kis számolással beláthatjuk, hogy a diszkrét idejű jelek csak akkor lesznek periodikusak, ha a k racionális többszöröse.

Igen. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \cos(k\frac{\pi}{17} + \frac{\pi}{3}) \newline 2n\pi = \varphi L \newline \varphi = \frac{\pi}{17} \newline 2n\pi = \frac{\pi}{17}L \newline 2 = \frac{L}{17} \newline L = 2 \cdot 17 = 34 }

Nem.

Igen.

Nem.

Igen.