Számítógépes grafika és képfeldolgozás - Vizsga, 2015.01.12.

A VIK Wikiből
A lap korábbi változatát látod, amilyen Szeder Zoltán (vitalap | szerkesztései) 2015. január 12., 19:08-kor történt szerkesztése után volt. (→‎2. rész)

1.Feladat

1.rész

Feladat

Van egy madarunk, ami az origóból () sebességgel indul időpontban. időpontban pozícióba kerül. Adja meg az idő-parametrizáltan, milyen pozícióban, milyen sebességgel repült.

Megjegyzés

Sajnos a feladatból (számomra) hiányzott egy paraméter ( értéke Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t=1} időpontban, vagy, hogy állandó-e a gyorsulás). Amennyiben valaki tud egy jobb, egyértelműbb megoldást, kérem, hogy ossza meg ebben a cikkben.

Megoldás #1

Feltételezzük, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a(t)} állandó ( csak Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a} -ként hivatkozok rá):

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t)=at+v}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p(t)={a \over 2}t^2 + vt + \underline{0} = {a \over 2}t^2 + vt}

Ebből következően ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t=1} :

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p={a \over 2} + v}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a=2(p-v)}

Tehát:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t)=2(p-v)t+v}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p(t)=(p-v)t^2+vt}

2. rész

Amennyiben a madár modelje alapesetben csőrével az +y, farkával a -y, hátával a +z és hasával a -z valamint a szárnyai az x tengelyek felé néz, milyen transzformációkat kell elvégeznünk, hogy megfelelő irányban és pozícióban legyen minden időpillanatban úgy, hogy forduláskor bedől (Frenet keret)

Megjegyzés

Valószínűleg hibás (sorry). Érdemes átnézni a jegyzeteket (bmeanimr.ppt ~17. dia) és leellenőrizni. Ebből próbáltam én is összerakni. Amennyiben mégis helyes, akkor kéretik törölni ezt a két sort :)

(A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle {x \over |x|}} kifejezés egyszerűen csak normalizálást jelent.)

Megoldás

A jegyzetben az alábbi koordinálták vannak:

  • Madár csőre: +z tengely
  • Madár háta: +y tengely
  • Madár szárnyai: x tengely

Ennek köszönhetően fel kell cserélni az egyenletekben a tengelyeket:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y_m = r'(t) = v(t)}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_m = y_m \times r''(t) = y_m \times a}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z_m = y_m \times x_m}

Ebbe a három vektorba kell forgatni a madarat. Az első cél, hogy az x tengely megfeleljen (két forgatás - z és y), utána az y tengelyt feleltetjük meg (1 forgatás - x)

  • A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_z} -t hamar kinyerhetjük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_m} y értékéből

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_z'=\sin^{-1}\left( \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \left[{x_m \over |x_m|}\right]\right)}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_z \begin{cases} x>0 &= \varphi_z' \\ x \le 0 &= \pi-\varphi_z' \end{cases} }

  • Forgassuk be az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x} tengelyt a helyére Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y} -ból való forgatással. Az ehhez tartozó szög:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_y'=\cos^{-1}\left({x_m' \over |x_m'|} \cdot {x_m \over |x_m|}\right)}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_y \begin{cases} z>0 &= -\varphi_y' \\ z \le 0 &= \varphi_y' \end{cases} }

  • Keressük meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y} tengely jelenlegi helyét:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'= \begin{bmatrix} \cos\varphi_z & -\sin\varphi_z & 0 \\ \sin\varphi_z & \cos\varphi_z & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\sin\varphi_z \\ \cos\varphi_z \\ 0 \end{bmatrix} }

  • és számoljuk ki a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'} tengely és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y_m} közötti szöget

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_x'=\cos^{-1}\left({y' \over |y'|} \cdot {y_m \over |y_m|}\right)}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_x \begin{cases} z>0 &= \varphi_x' \\ z \le 0 &= -\varphi_x' \end{cases} }

Ezekkel a szögekkelÉrtelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (\varphi_x,\varphi_y,\varphi_z)} kell forgatni a madarat, és el kell mozdítani Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p(t)} vektorral

2. feladat

Már nem emlékszem...