Labor ZH feladatai témakörök szerint csoportosítva

A VIK Wikiből
A lap korábbi változatát látod, amilyen Harapeti (vitalap | szerkesztései) 2013. május 21., 20:22-kor történt szerkesztése után volt. (kép beszúrása)


Labor ZH feladatai témakörök szerint csoportosítva by Lévai Szabolcs alapján - elkezdtem gépelni a feladatok szövegét, Matlab-kódokat, kérlek, folytassátok! Így még könnyebben áttekinthető, kereshető lenne, feladat szövege szerint is. Egyelőre erősen piszkozat állapotú az oldal. --Haraszin Péter (vita) 2013. május 21., 19:22 (UTC)

Állapotváltozós leírás (stabilitás, irányíthatóság, megfigyelhetőség, állapotvisszacsatolásos szabályozás)

3. Egy {A,b,c,d} paraméterekkel adott rendszer esetén

 A=[-1,1;0,-2], b=[1;2], c=[2,0], d=0

a./ Végezzen állapottranszformációt úgy, hogy az A mátrix diagonális legyen (kanonikus alak). Adja meg ebben az esetben az állapotmátrixokat. Adja meg a rendszer pólusait. (3 pont)

 A=[-1,1;0,-2], b=[1;2], c=[2,0], d=0
 
 [Ad,bd,cd,dd]=canon(A,b,c,d)

Eredmény:

 Ad =
     -1     0
      0    -2
 
 bd =
     3.0000
     2.8284
 
 cd =
     2.0000   -1.4142
 
 dd =
      0

Pólusok:

--> p=[-1,-2]

b./ Irányítható-e, megfigyelhető-e a rendszer? (2 pont)

--> irányítható, megfigyelhető

b./ Ábrázolja az eredeti rendszer állapottrajektóriáját u(t) = 0 és x(0)=[x_1(0);x_2(0)]=[2;6] felételek mellett. (3 pont)

 H=ss(A,b,c,d)
 x0=[2,6]
 [y,t,x]=initial(H,x0)
 plot(x(:,1), x(:,2))
 grid

http://i.imgur.com/gtSRpmT.png