Matematika A1 - Vizsga: 2007.06.07

A VIK Wikiből
A lap korábbi változatát látod, amilyen David14 (vitalap | szerkesztései) 2014. január 17., 23:59-kor történt szerkesztése után volt. (→‎6. Számítsa ki a következő határozatlan integrálokat:)

Sablon:Noautonum


1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

2. Oldja meg a egyenletet.

Megoldás

Írjuk ki z-t és z konjugáltat algebrai alakban:

Zárójelek felbontása után:

Kihúzzuk a közös tagokat, osztunk 2i-vel:

Ez akkor lehetséges, ha és , az összes ilyen alakú szám megoldás.

3. Határozza meg az alábbi sorozatok határértékét:

Megoldás

a, Feladat:


A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:

Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!

Látható, hogy a nevező 1-hez tart, így a határérték:


b, Feladat:


A gyökjel alatt végezzünk algebrai átalakítást:

Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:

Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.

Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.

Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.


Tudjuk, hogy:


Így a rendőrelv miatt:

4. Legyen és .

a, Hol folytonos és hol deriválható ?

b, Hol folytonos ?

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

5. Igaz vagy hamis? Válaszát indokolja!

a, Ha és , akkor

b, Ha akkor

c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n

d, Ha f szigorúan monoton nő -en, akkor

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

6. Számítsa ki a következő határozatlan integrálokat:

Megoldás

a, Feladat:


Parciális törtekre bontjuk az integrandust:



Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik:


Tehát:


Így már könnyű integrálni:


b, Feladat:


Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)