Matematika A1 - Vizsga: 2007.06.07
1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)2. Oldja meg a egyenletet.
Írjuk ki z-t és z konjugáltat algebrai alakban:
Zárójelek felbontása után:
Kihúzzuk a közös tagokat, osztunk 2i-vel:
Ez akkor lehetséges, ha és , az összes ilyen alakú szám megoldás.
3. Határozza meg az alábbi sorozatok határértékét:
a, Feladat:
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:
Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!
Látható, hogy a nevező 1-hez tart, így a határérték:
b, Feladat:
A gyökjel alatt végezzünk algebrai átalakítást:
Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:
Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.
Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.
Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.
Tudjuk, hogy:
Így a rendőrelv miatt:
4. Legyen és .
a, Hol folytonos és hol deriválható ?
b, Hol folytonos ?
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)5. Igaz vagy hamis? Válaszát indokolja!
a, Ha és , akkor
b, Ha akkor
c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n
d, Ha f szigorúan monoton nő -en, akkor
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)6. Számítsa ki a következő határozatlan integrálokat: