„Szerkesztő:Nagy Vilmos/Jelek Gyakorlatjegyzet - 2017 (ősz)” változatai közötti eltérés

Nagy Vilmos (vitalap | szerkesztései)
4. gyakorlat 1. feladat
Nagy Vilmos (vitalap | szerkesztései)
4. gyakorlat: 1. feladat, válasz
207. sor: 207. sor:
==== Impulzusválasz ====
==== Impulzusválasz ====
<math>h(t) = \delta(t) + \epsilon(t) \cdot (e^{-0.1\cdot t} \cdot -0.125 + e^{-0.5\cdot t} \cdot 1.625)</math>
<math>h(t) = \delta(t) + \epsilon(t) \cdot (e^{-0.1\cdot t} \cdot -0.125 + e^{-0.5\cdot t} \cdot 1.625)</math>
==== Válasz ====
Ha a gerjesztés:
<math>u(t) = 2 \epsilon(t)</math>
<math>y(t) = -0.25 \cdot e^{-0.1\cdot t} (\frac{e^{0.1\cdot t}}{0.1} - \frac{1}{0.1}) + 3.25 \cdot e^{-0.5\cdot t} (\frac{e^{0.5\cdot t}}{0.5} - \frac{1}{0.5})</math>
<math>y(t) = \epsilon(t) \cdot (6 + 2.5 \cdot e^{-0.1\cdot t} - 6.5 \cdot e^{-0.5\cdot t})</math>