„Szerkesztő:Nagy Vilmos/Jelek Előadásjegyzet - 2017 (ősz)” változatai közötti eltérés

A VIK Wikiből
Nagy Vilmos (vitalap | szerkesztései)
Levettem az előadások számozását, mert nem szigorúan aszerint írom a jegyzetet.
Nagy Vilmos (vitalap | szerkesztései)
→‎Jelek osztályozása: Néhány csoportosítás definiálva.
64. sor: 64. sor:


== Jelek osztályozása ==
== Jelek osztályozása ==
Millióféleképpen lehet jeleket osztályozni. Ebből én csak azt jegyzetelem le, amivel foglalkozik a tárgy, a többi nem érdekes.
Millióféleképpen lehet jeleket osztályozni. Kezdjünk néhány jelöléssel:
<br/><small>(én most mindent diszkrét idejű jelekre írok le, de ugyanígy jelölöd folytonos időben is)</small>
* <math>u[k]</math> a ''k'' időbeli gerjesztés
* <math>y[k]</math> a ''k'' időbeli válasza a rendszernek
* A teljes rendszert pedig a ''W''-vel jelöljük, így: <math>W$\left\{u[k]\right\}$ = y[k]</math>
 
=== Gerjesztések, Válaszok száma ===
A tárgy keretein belül egy gerjesztéssel, és egy válasszal rendelkező rendszerekről (SISO: Single Input Single Output) beszélünk.
 
Léteznek MIMO, MISO, SIMO (''m'', mint multiple) rendszerek is, ezekről nem lesz szó.<br/><small>A jelölés nagyrészt hasonló ott is, csak az ''u'', ''y'', etc. vektorokként értelmezendők</small>
 
=== Idő variancia ===
A ''W'' operátor lehet idő függő, és időtől nem függő. Ezek alapján megkülönböztetünk
 
* Idő variáns rendszereket
* Idő invariáns rendszereket.
 
A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy <math>W$\left\{u[k]\right\}$ = y[k] \Rightarrow W$\left\{u[k-L]\right\}$ = y[k-L]</math>.
 
=== Lineáris rendszerek ===
Igaz az alábbi összefüggés:
 
<math>W$\left\{c_a \cdot u_a[k] + c_b \cdot u_b[k] \right\}$ = c_a \cdot W$\left\{u_a[k]\right\}$ + c_b \cdot W$\left\{u_b[k]\right\}$</math>
 
=== Memória mentes, vagy memóriás ===
'''Def:''' Egy rendszer memória mentes, ha a válasza a ''t'' ill. ''k'' pillanatban  csak a gerjesztés <math>u(t)</math> illetve <math>u[k]</math> értékétől függ.
 
=== Kauzális, vagy akauzális ===
'''Def:''' Egy rendszer kauzális, ha a válasza a ''t_1'' ill. ''k_1'' pillanatban  csak a gerjesztés <math>u(t), t<t_1</math> illetve <math>u[k], k<k_1</math> értékétől függ.


=== Folytonos / Diszkrét idejű jelek ===
=== Folytonos / Diszkrét idejű jelek ===
81. sor: 109. sor:
=== Egyéb osztályozás ===
=== Egyéb osztályozás ===
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.
* Determinisztikus: minden értéke ''megjósolható'' (nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Determinisztikus: a rendszer válasza determinisztikus (''megjósolható'', nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.



A lap 2017. szeptember 11., 13:55-kori változata

Előszó: Amíg nem megy a LaTeX képletek renderelése a wikin, addig ezt feltöltöm PDF-ben is, ide: File:jelek_jegyzet_vilmosnagy_latex.pdf

A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.

Ha a félév végéig sikerül rendesen csinálnom (igyekszem :-)), s legalább az első ZHig (~hetedeik hét) le van tisztázva az anyag, akkor közkincsé teszem, s mehet a Rendszerelmélet lap alá. Addig viszont szeretném a személyes játszóteremnek meghagyni (nemhiába szerkesztői subpage ez), s bármit hezitálás nélkül visszavonok, ami nem tetszik. Ha hibát találsz, vagy kérdésed van, a Vitalapon állok rendelkezésre. (vagy a vilmos.nagy@outlook.com email címen)

Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)

Megjegyzések magamnak

Ezeket csak felvésem ide, hogy ne vesszen el. Még nem tudom, hova kellene ezeket bedolgozni...

  • az első gyakon elhangzott, hogy az Euler-összefüggések még hasznosak lesznek. Innen a szinus és a koszinus kifejezése, ni.

Bevezetés

A tárgy keretében fizikai folyamatokat szeretnénk leírni. A fizikait értsd, hogy kb. bármilyen olyan folyamatot, amiben mérhető mennyiségek szerepelnek. Ezeket a mennyiségeket változókkal írjuk le. Ezekből a változókból, ha fizikai dimenzió nélkül kezeljük, lesznek a jeleink. Ilyen folyamat lehet, például:

  • Az egyetem egyes évfolyamaira beiratkozott hallgatók száma.
  • Híd deformációja a terhelés függvényében
  • Lift sebessége a magasság függvényében, ha az ötödik emeletre akarunk menni.
  • stb.

Rendszerek ábrázolása

Az alábbi ábrán egy egyszerű rendszer ábrázolása látható.

(szerk.: Remélem nem csesztem el benne semmit, az x[k], meg x[k+1] jelölés nem tuti. http://draw.io-n rajzolva, forrás itt: https://drive.google.com/open?id=0BzSJOKSJE6qqUUlwZVk0T3JYYUU )

Példa

A fenti rajz lehet az ábrája az alábbi rendszer-modellnek.

Egy egyszerű egyetemet, s az egyetemen tanuló hallgatók számát szeretnénk modellezni. Négy jelet veszünk fel: x1, x2, x3, y. Ebből az x-ek az adott évben az adott évfolyamra járó hallgatók száma, míg az y az adott évben végző hallgatók száma. Az x1 értéke egyenlő az adott évben beiratkozó hallgatók és az előző évben az első évfolyamot nem teljesítő hallgatók számával. Amennyiben az újonnan beiratkozókat u-val jelöljük, míg az egyes évfolyamokon megbukottakat a-val, sikeresen teljesítőket b-vel (ezt most önkényesen jelölöm a illetve b-vel):

(szerk.: remélem semmit nem írtam el, de ezt a gyakorlat után még utánaszámolom. Amíg nem javítják meg a wiki-t, addig itt le tudod renderelni ezeket: http://quicklatex.com/)

Ebből ilyen szép táblázatot lehet rajzolni, ha:

  • minden k-ra
  • minden n-re
  • minden n-re

(vegyük észre, hogy nem szükségszerűen 1. A maradékot kirúgták, elment, etc. belefér a modellbe).

Év (k) Elsőévesek Másodévesek Harmadévesek Végzők
1 500 0 0 0
2 650 325 0 0
3 695 520 211 0
4 709 608 401 137
5 713 643 515 260
5 714 656 572 335

Nem számolom tovább, de ha ügyes vagy, néhány év múlva egy ~konstans értékre kéne beállnia a végzősök számának (~400 körül, valahol). Ez a tárgy ilyen (meg ennél bonyolultabb) modellekről, s azoknak az ennél egyszerűbb kiszámolásáról fog szólni.

Egyébként such wow, a fenti felállásban az u a gerjesztés, az y pedig a felvázolt rendszer válasza, s primitív rendszereket kell is majd hasonlóan számolgatni a háziban.

Jelek osztályozása

Millióféleképpen lehet jeleket osztályozni. Kezdjünk néhány jelöléssel:
(én most mindent diszkrét idejű jelekre írok le, de ugyanígy jelölöd folytonos időben is)

  • a k időbeli gerjesztés
  • a k időbeli válasza a rendszernek
  • A teljes rendszert pedig a W-vel jelöljük, így:

Gerjesztések, Válaszok száma

A tárgy keretein belül egy gerjesztéssel, és egy válasszal rendelkező rendszerekről (SISO: Single Input Single Output) beszélünk.

Léteznek MIMO, MISO, SIMO (m, mint multiple) rendszerek is, ezekről nem lesz szó.
A jelölés nagyrészt hasonló ott is, csak az u, y, etc. vektorokként értelmezendők

Idő variancia

A W operátor lehet idő függő, és időtől nem függő. Ezek alapján megkülönböztetünk

  • Idő variáns rendszereket
  • Idő invariáns rendszereket.

A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy .

Lineáris rendszerek

Igaz az alábbi összefüggés:

Memória mentes, vagy memóriás

Def: Egy rendszer memória mentes, ha a válasza a t ill. k pillanatban csak a gerjesztés illetve értékétől függ.

Kauzális, vagy akauzális

Def: Egy rendszer kauzális, ha a válasza a t_1 ill. k_1 pillanatban csak a gerjesztés illetve értékétől függ.

Folytonos / Diszkrét idejű jelek

Beszélhetünk időben folytonos, vagy diszkrét idejű jelekről.

  • Folytonos idejű, jelölése
    A folytonos idejű jelek minden értékben értelmezettek.
  • Diszkrét idejű, jelölése
    A diszkrét idejű jelek csak a egész számok helyén értelmezettek.

Periodicitás

Folytonos időben

Egy folytonos idejű jel periodikus akkor, és csak akkor, ha létezik periódusidő, hogy minden t-re.

Diszkrét időben

Egy diszkrét idejű jel periodikus akkor, és csak akkor, ha létezik periódusidő, hogy minden k-ra.

Egyéb osztályozás

Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.

  • Determinisztikus: a rendszer válasza determinisztikus (megjósolható, nem véletlenszerű)
    ez nyilván nem így hangzik matematikusul, de nekünk jó lesz
  • Belépő: minden esetén.

Említés szintjén előkerül sztochasztikus (nem determinisztikus), nem belépő, x-ben belépő, diszkrét értékű, etc. jelek. Ezekkel nem foglalkozik a tárgy, de kis gondolkodással megfejtheted, melyik micsoda.

Továbbá megkülönböztetünk páros és páratlan jeleket:

  • páros: (az y tengelyre szimmetrikus)
  • páratlan: (az origóra szimmetrikus)

Állítás: Minden jel felírható egy páros és egy páratlan jel összegére.
Bizonyítás: Nem bizonyítjuk.

Jelek felírása

Diszkrét idejű jelek esetén

Speciális jelek

Egységimpulzus

Egységugrás

Állítás: Minden DI jel megadható egységimpulzusok szuperpozíciójaként.
Bizonyítás: Nem bizonyítjuk.

Példa 1

Az egységugrás felírható egységimpulzusok összegeként: (szerk.: ezt ellenőrizd le!)

Példa 2

Vegyük a következő jelet:

.

Ezt fel tudjuk írni egy sorban így:

.

Itt ugye a csak a esetben lesz 1, minden más esetben 0. Ezt kicsit tovább csavarva:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]= \sum_{i=0}^{\infty} x[i] \cdot \delta[k-i]} .

Mivel fentebb már kimondtuk, hogy ennek csak Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k = i} esetben van értelme. Így meg, az egyszerűsítések után egy triviális dolgot kapunk, miszerint:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]=x[k]}

DE!

Konvolúció

Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát h[k]-val jelöljük.
Megjegyzés: Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni, miért is van ezekre szükség - s hogy ennyi elég-e.

Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k]} :

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k]= \sum_{i=0}^{\infty} x[i] \cdot h[k-i]}

Vegyük észre, hogy összesen az egységimpulzust cseréltük le fent a válaszára, majd ugyanúgy szuperponáljuk az egyes egységimpulzusokat.

Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:

  • egységimpulzussal gerjesztem a termet (tapsolok),
  • lemérem leghátul a terem által adott impulzusválaszt,
  • számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.

Folytonos idejű jelek esetén

Speciális jelek

Egységugrás

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t)=\begin{cases} 0 & t<0 \\ 1 & t>0 \end{cases}}

Megjegyzés: Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(0)} -t nem definiáljuk, a tárgy keretében nem lesz rá szükség. Ha szeretnénk elképzelhetjük 0.5-nek, balról/jobbról 0/1-nek, etc.

Egységimpulzus

Írjuk fel az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t, T)} függvényt a következőképpen:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t, T)=\begin{cases} 0 & t<0 \\ 1/T & t \in (0, T) \\ 0 & t > T \end{cases}}

Ez 0-tól T-ig 1/T értékű négyzet. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_{-\infty}^{\infty} \epsilon(t, T) dt = 1}

Az egységimpulzust nevezzük annak, ha az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t, T)} -ben a T tart nullához.