„Anal2-magic” változatai közötti eltérés
| 247. sor: | 247. sor: | ||
<math>\frac {x^m} {1-x} = \sum_{k=m}^{\infty} x^k \rightarrow Konvergencia tartomany: |x| < 1 </math> <br /> | <math>\frac {x^m} {1-x} = \sum_{k=m}^{\infty} x^k \rightarrow Konvergencia tartomany: |x| < 1 </math> <br /> | ||
<math>e^x = \sum_{k=0}^{\infty} \frac {x^k} { k!} \rightarrow KT: x \in R </math> <br /> | <math>e^x = \sum_{k=0}^{\infty} \frac {x^k} { k!} \rightarrow KT: x \in R </math> <br /> | ||
<math>ln(1+x) = | <math>ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k}}{k} \rightarrow KT :|x| < 1 </math> <br /> | ||
<math>(1 + x)^a = \sum_{k=0}^{\infty} \binom{a}{k}* x^k \rightarrow |x| < 1, a \in C </math> <br /> | <math>(1 + x)^a = \sum_{k=0}^{\infty} \binom{a}{k}* x^k \rightarrow |x| < 1, a \in C </math> <br /> | ||
<math>\sin(x) = \sum_{k=0}^{\infty} \frac {-1^k} {(2 * k + 1)!} * x^{2 * k + 1} \rightarrow KT: x \in R</math><br /> | <math>\sin(x) = \sum_{k=0}^{\infty} \frac {-1^k} {(2 * k + 1)!} * x^{2 * k + 1} \rightarrow KT: x \in R</math><br /> | ||