„Algoritmuselmélet - ZH, 2013.04.03.” változatai közötti eltérés
113. sor: | 113. sor: | ||
}} | }} | ||
===8. Feladat=== | ===8. Feladat (Van megoldás)=== | ||
'''(a)''' Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa? | |||
'''(b)''' Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára? | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
{{Rejtett | |||
|mutatott=<big>''Megjegyzések a feladathoz''</big> | |||
|szöveg= | |||
*Avagy mitől is piros-fekete egy piros-fekete fa? | |||
#Minden nem levél csúcsnak 2 fia van. | |||
#Elemeket belső csúcsban tárolunk. | |||
#teljesül a keresőfa tulajdonság. | |||
#A fa minden csúcsa piros, vagy fekete. | |||
#A gyökér fekete. | |||
#A levelek feketék. | |||
#Minden piros csúcs mindkét gyereke fekete. | |||
#Minden ''v'' csúcsra igaz, hogy az összes ''v''-ből levélbe vezető úton ugyanannyi fekete csúcs van (~fekete magasság). | |||
}} | |||
'''a)''' Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa? | |||
*Igaz. ''(Nem tudom, mennyi magyarázatot, vagy milyen indoklást várnak ide, de a piros-fekete tulajdonságai közül talán csak a fekete magasság szorul magyarázatra (...), a többi elég triviális.)'' | |||
**Ha a részgráfra nem állna fenn a fekete magasság kritériuma, akkor pláne nem fog a teljes gráfra teljesülni, hiszen hiába jó a fekete magasság a pontig, ha a pont tönkre teszi azt :/. | |||
'''b)''' Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára? | |||
*Nem. A gyökérnek feketének kell lennie. | |||
}} | }} |
A lap 2013. június 13., 20:44-kori változata
2013.04.03. ZH megoldásai
1. Feladat
TODO
2. Feladat (Van megoldás)
Egy x -es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb.
(Vagyis olyan -t keresünk, amire maximális.)
- Ahogy az többször is segít, úgy most is, hogy felrajzolunk magunknak egy 3x3, vagy 4x4-es táblázatot, és nézegetjük, hogyan kéne dolgozni...
- A feladatban 1-1 lépésnek vettem:
- 1 művelet () elvégzését (vagyis a 3 lépés).
- 1 értéke beírása a cellába.
- 1 összehasonlítás (és esetleges cserék).
3. Feladat (Van megoldás)
Kaphatjuk-e az 1,7,3,6,11,15,22,17,14,12,9 számsorozatot úgy, hogy egy (a szokásos rendezést használó) bináris keresőfában tárolt elemeket posztorder sorrendben kiolvasunk?
- Szokásos rendezést használó bináris keresőfa:
- Postorder:
- Rekurzívan . Magyarul előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.
- Egyik fontos tulajdonsága, hogy a gyökér az mindig a (figyelt) lista végén van.
- Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. (Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)
- A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
- A 3. sorban 14 lesz a gyökér, így a 14-est felrajzoljuk a 12-es jobb fiának.
- A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
- Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen sorrend van, ebből következik, hogy ilyen fa nem létezhet.
4. Feladat (Van megoldás)
Adjacencia-mátrixával adott csúcsú, irányított gráfként ismerjük egy város úthálózatát. El szeretnék jutni pontból pontba, de sajnos minden csomóponthoz várnunk kell a nagy hóesés miatt, a várakozás hossza minden csomópontra ismert és független attól, hogy merre akarunk továbbmenni. Adjon algoritmust, ami lépésben eldönti, hogy merre menjünk, hogy a lehető legkevesebbet kelljen várni összességében. (A csomópontok közötti utak hosszának megtétele a várakozáshoz képest elhanyagolható időbe telik, tekintsük 0-nak. -ban és -ben nem kell várakozni.)
- A "probléma", hogy a csúcsoknak van súlya (ill. az éleknek is van, de az 0), amivel nem igen tudunk mit kezdeni. De nem hiába volt BSZ1 (vagy BSZ2?), ahol megtanultuk, hogy könnyedén csinálhatunk a csúcssúlyból élsúlyt.
- Az adott pontot (X) lecseréljük 2 pontra (X1, X2). Ami eddig X-be ment, az menjen X1-be, és ami X-ből ment, az menjen X2-ből. (Vagyis X1-ből csak X2-be megy él, és X2-be csak az X1 megy.)
- A 2 pontot összekötjük, a köztük menő élsúly pedig az X pont súlya lesz.
- Csináljuk hát ezt ezzel a gráffal:
- Az eredeti csúcsú G gráfból csinálunk így egy F gráfot, melyben csúcs lesz (és az élszám is n-nel nő, de ez most minket annyira nem izgat).
- Ebben az F gráfban kell megtalálni a legrövidebb utat egy "X2"-ből egy "Y1"-be.
- A Dijkstra-algoritmus lépésben keres legrövidebb utat, ebben az esetben .
- Így a feladat ezzel meg is oldva.
5. Feladat
TODO
6. Feladat
TODO
7. Feladat
TODO
8. Feladat (Van megoldás)
(a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?
(b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?
- Avagy mitől is piros-fekete egy piros-fekete fa?
- Minden nem levél csúcsnak 2 fia van.
- Elemeket belső csúcsban tárolunk.
- teljesül a keresőfa tulajdonság.
- A fa minden csúcsa piros, vagy fekete.
- A gyökér fekete.
- A levelek feketék.
- Minden piros csúcs mindkét gyereke fekete.
- Minden v csúcsra igaz, hogy az összes v-ből levélbe vezető úton ugyanannyi fekete csúcs van (~fekete magasság).
a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?
- Igaz. (Nem tudom, mennyi magyarázatot, vagy milyen indoklást várnak ide, de a piros-fekete tulajdonságai közül talán csak a fekete magasság szorul magyarázatra (...), a többi elég triviális.)
- Ha a részgráfra nem állna fenn a fekete magasság kritériuma, akkor pláne nem fog a teljes gráfra teljesülni, hiszen hiába jó a fekete magasság a pontig, ha a pont tönkre teszi azt :/.
b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?
- Nem. A gyökérnek feketének kell lennie.