Algoritmuselmélet - ZH, 2013.04.03.

A VIK Wikiből


2013.04.03. ZH megoldásai

1. Feladat (Van megoldás)

Mi az a legkisebb r racionális szám, melyre teljesül, hogy

Megoldás
  • Először megpróbáljuk felülről becsülni:
    • Felülről becsüljük a sorozatot, ha az elemeket rendre -nek tekintjük, vagyis:



  • Most pedig megpróbáljuk alulról becsülni:

    • Alulról becsüljük a sorozatot:





  • A kettőt együttvéve látszik, hogy

2. Feladat (Van megoldás)

Egy x -es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb.

(Vagyis olyan -t keresünk, amire maximális.)

Megoldás
Megjegyzések a feladathoz
  • Ahogy az többször is segít, úgy most is, hogy felrajzolunk magunknak egy 3x3, vagy 4x4-es táblázatot, és nézegetjük, hogyan kéne dolgozni...
  • A feladatban 1-1 lépésnek vettem:
    • 1 művelet () elvégzését (vagyis a 3 lépés).
    • 1 értéke beírása a cellába.
    • 1 összehasonlítás (és esetleges cserék).
  • Adott az mátrix.
  • Létrehozunk egy mátrixot (szintén x -es).(ez lépés)
  • . (ez lépés)
  • és .
  • Először kitöltjük az 1. sort . (ez lépés)
  • Majd kitöltjük az 1. oszlopot . (ez lépés)
  • Minden további cellában pedig . (ez lépés)
  • A keresett párost pedig folyamat nyilván tartjuk: ha . (ez lépés)
  • lépésszámú algoritmusunk van, tehát jók vagyunk.
  • 3. Feladat (Van megoldás)

    Kaphatjuk-e az 1,7,3,6,11,15,22,17,14,12,9 számsorozatot úgy, hogy egy (a szokásos rendezést használó) bináris keresőfában tárolt elemeket posztorder sorrendben kiolvasunk?

    Megoldás
    Megjegyzések a feladathoz
    • Szokásos rendezést használó bináris keresőfa:
    • Postorder:
      • Rekurzívan .(Magyarul: előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.)
      • Egyik fontos tulajdonsága, hogy a gyökér az mindig a (figyelt) lista végén van.
  • Első lépésnek írjuk fel egy táblázatba a számokat (az oszlopszámot tudjuk, ez esetben 11, sorok száma meg majd alakul...).
  • A továbbiakban az i. sorban jelöljük, hogy melyik elem a gyökér (=), és hogy melyek a nála kisebbek (<), avagy nagyobbak (>) (a képen keretezéssel jelzem, hogy melyik az éppen figyelt lista). Ez azért hasznos, mert a posztorder bejárás során, ezzel a technikával mindig olyan sorrendet kell kapjunk, hogy , vagyis nem állhat fel olyan helyzet, hogy vagy .
    • Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. (Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)
    • A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
    • A 3. sorban 14 lesz a gyökér, így a 14-est felrajzoljuk a 12-es jobb fiának.
    • A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
    • Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen sorrend van, ebből következik, hogy ilyen fa nem létezhet.
  • 4. Feladat (Van megoldás)

    Adjacencia-mátrixával adott csúcsú, irányított gráfként ismerjük egy város úthálózatát. El szeretnék jutni pontból pontba, de sajnos minden csomóponthoz várnunk kell a nagy hóesés miatt, a várakozás hossza minden csomópontra ismert és független attól, hogy merre akarunk továbbmenni. Adjon algoritmust, ami lépésben eldönti, hogy merre menjünk, hogy a lehető legkevesebbet kelljen várni összességében. (A csomópontok közötti utak hosszának megtétele a várakozáshoz képest elhanyagolható időbe telik, tekintsük 0-nak. -ban és -ben nem kell várakozni.)

    Megoldás
    • A "probléma", hogy a csúcsoknak van súlya (ill. az éleknek is van, de az 0), amivel nem igen tudunk mit kezdeni. De nem hiába volt BSZ1 (vagy BSZ2?), ahol megtanultuk, hogy könnyedén csinálhatunk a csúcssúlyból élsúlyt.
    • Az adott pontot (X) lecseréljük 2 pontra (X1, X2). Ami eddig X-be ment, az menjen X1-be, és ami X-ből ment, az menjen X2-ből. (Vagyis X1-ből csak X2-be megy él, és X2-be csak az X1 megy.)
    • A 2 pontot összekötjük, a köztük menő élsúly pedig az X pont súlya lesz.
    • Csináljuk hát ezt ezzel a gráffal:
      • Az eredeti csúcsú G gráfból csinálunk így egy F gráfot, melyben csúcs lesz (és az élszám is n-nel nő, de ez most minket annyira nem izgat).
      • Ebben az F gráfban kell megtalálni a legrövidebb utat egy "X2"-ből egy "Y1"-be.
      • A Dijkstra-algoritmus lépésben keres legrövidebb utat, ebben az esetben .
    • Így a feladat ezzel meg is oldva.
    G gráfF gráf

    Talán egyszerűbben: mivel 0 az utazási idő (élsúlyok) és bármerre megyünk egy csúcsból, ugyanannyit kell várni, ezért tekinthetjük a csúcsból kimenő élek súlyának a csúcsban töltött időt (A-ból 0, mivel itt nem várakozunk, B-ből nem megyünk tovább...). Így az eredeti gráfon (az élsúlyok beírása után) alkalmazható a Dijkstra algo.

    --Deák Zsolt (vita) 2015. április 8., 12:22 (UTC)

    5. Feladat

    Adjacencia-mátrixával adott n csúcsú, élsúlyozott, irányítatlan gráfként ismerjük egy ország úthálózatát (a csomópontok a városok, az élek a közvetlen összeköttetések a városok között). Az élek súlya a városok közti távolságot adja meg. (Feltehetjük, hogy a távolságok egészek.) Adjon egy O(n6) lépésszámú algoritmust, ami eldönti, hogy lehetséges-e úgy kiválasztani öt várost, hogy ezektől bármely más város legfeljebb 50 kilométerre van. (Ezekbe a városokba lenne érdemes hókoztrókat telepíteni.)

    Megoldás
    • A megoldáshoz először Floyd algoritmussal páronként meghatározzuk az összes város távolságát, ez O(n3).
    • A város irányítatlan gráfként van megadva, de ezen könnyen segíthetünk úgy, hogy a jelenlegi élek helyett felveszünk két irányítottat, azonos súllyal. Ez O(n2).
    • Ezek után brute force módszerrel az összes csúcsötösre ellenőrizzük, hogy azok öten lefedik-e (legfeljebb 50 km-re vannak) az összes várost.
      • n5 városötös van, mindegyikre le kell ellenőrizni, hogy jók-e. Az ellenőrzés során végignézzük, az összes csúcsra (n db.), hogy el lehet-e érni. Ez tehát O(n5*n)=O(n6).
    • Összességében ezért O(n6) lépésszámú az algoritmus.

    6. Feladat (Van megoldás)

    Egy tömbben adott darab 0-tól különböző egész szám (lehetnek negatívak is köztük) és adott egy egész szám is. Adjon lépésszámú algoritmust, ami eldönti, hogy melyik az a elem a tömbben, melyek szorzata maximális.

    Megoldás
    • Első lépésben csökkenő sorrendbe rendezzük az elemeket azok abszolút értéke szerint. pl. összefésüléses rendezéssel.
    • Vesszük az első szám szorzatát.
      • Ha ez pozitív, akkor jók vagyunk, nincs más dolgunk.
      • Ha ez negatív, akkor kiválasztjuk a listából a legkisebb pozitív és negatív elemet, a maradék listából pedig a legnagyobb pozitív és negatív elemet. Most meg kell nézni, hogy mit éri meg lecserélni? A pozitívat negatívra, vagy a negatívat pozitívra?
        • Ha , akkor a listából kivesszük -t, és berakjuk -t
        • Ha , akkor a listából kivesszük -t, és berakjuk -t
        • Ha nincs a listában pozitív szám, akkor kivesszük a -t, és berakjuk -t
        • Ha nincs az egész listában pozitív szám, akkor a legnagyobb számot akkor kapjuk, ha a darab utolsó elemet vesszük be.

    7. Feladat (Van megoldás)

    Az tömbben egy kupac adatstruktúrát tárolunk, minden tárolt elem különböző. Tudjuk, hogy ebben a kupacban a legnagyobb elem . Határozza meg összes lehetséges értékét!

    Megoldás
    • Kupac egyik jó tulajdonsága, hogy teljes bináris fa, így az elem számból kiszámolható, hogy milyen magas a fa.
      • Tudjuk, hogy :.
      • Ebben az esetben .
    • A legnagyobb elem vagy a legalsó szinten van, vagy ha az nem "telített", akkor az előtte lévő szinten olyan csúcsok is szóba jöhetnek, akiknek nincsen gyereke.
      • Mivel tudjuk, hogy a fa magassága 11, ezért:
        • A kupacban összesen 2047 elemnek van hely, tehát még 34 elem férne el. Ebből pedig az következik, hogy a 10. szinten 17 olyan csúcs van, aminek nincsen fia, így ők még játszhatnak a legnehezebb elem díjáért.
        • A 11. szinten 1024 elem férne el, de tudjuk, hogy hiányzik 34, tehát a 11. szinten csak 990 elem van, amik a legnehezebbek lehetnek a fában.
    • Ha a kupacot tömbbe írjuk, akkor azt fentről-lefele, balról-jobbra töltjük fel.
      • Az előzőek alapján tudjuk, hogy a 11. szinten 990, a 10. szinten pedig 17 csúcs jöhet szóba, így összesen 1007 helyen lehet a legnehezebb elem. A tömbös elrendezés alapján ez azt jelenti, hogy az .
    Avagy...
    • Avagy bebizonyítható, hogy a legnagyobb elem az az utolsó helyen állhat.

    8. Feladat (Van megoldás)

    (a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?

    (b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?

    Megoldás
    Megjegyzések a feladathoz
    • Avagy mitől is piros-fekete egy piros-fekete fa?
    1. Minden nem levél csúcsnak 2 fia van.
    2. Elemeket belső csúcsban tárolunk.
    3. teljesül a keresőfa tulajdonság.
    4. A fa minden csúcsa piros, vagy fekete.
    5. A gyökér fekete.
    6. A levelek feketék.
    7. Minden piros csúcs mindkét gyereke fekete.
    8. Minden v csúcsra igaz, hogy az összes v-ből levélbe vezető úton ugyanannyi fekete csúcs van (~fekete magasság).

    a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?

    • Igaz. (Nem tudom, mennyi magyarázatot, vagy milyen indoklást várnak ide, de a piros-fekete tulajdonságai közül talán csak a fekete magasság szorul magyarázatra (...), a többi elég triviális.)
      • Ha a részgráfra nem állna fenn a fekete magasság kritériuma, akkor pláne nem fog a teljes gráfra teljesülni, hiszen hiába jó a fekete magasság a pontig, ha a pont tönkre teszi azt :/.


    b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?

    • Nem. A gyökérnek feketének kell lennie.