|
|
35. sor: |
35. sor: |
| *Majd kitöltjük az 1. oszlopot <math> \rightarrow B[1,i]:=B[1,i-1]+A[1,i], i=2 \dots n </math>. ''(ez <math>\Rightarrow 2(n-1)=O(n)</math> lépés)'' | | *Majd kitöltjük az 1. oszlopot <math> \rightarrow B[1,i]:=B[1,i-1]+A[1,i], i=2 \dots n </math>. ''(ez <math>\Rightarrow 2(n-1)=O(n)</math> lépés)'' |
| *Minden további cellában pedig <math> B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] </math>. ''(ez <math>\Rightarrow 4(n-1)(n-1)=O(n^2)</math> lépés)'' | | *Minden további cellában pedig <math> B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] </math>. ''(ez <math>\Rightarrow 4(n-1)(n-1)=O(n^2)</math> lépés)'' |
| *A keresett <math> k,l </math> párost pedig folyamat nyilván tartjuk: ha <math> B[i,j] \geq aktmax \Rightarrow k=i, l=j </math> és <math> aktmax = B[i,j] </math>. ''(ez <math>\Rightarrow n^2-1=O(n^2)</math> lépés)'' | | *A keresett <math> k,l </math> párost pedig folyamat nyilván tartjuk: ha <math> B[i,j] \geq aktmax \Rightarrow k=i, l=j, aktmax = B[i,j] </math>. ''(ez <math>\Rightarrow n^2-1=O(n^2)</math> lépés)'' |
| *<math> 1+2O(n)+ 3O(n^2)=O(n^2)</math> lépésszámú algoritmusunk van, tehát jók vagyunk. | | *<math> 1+2O(n)+ 3O(n^2)=O(n^2)</math> lépésszámú algoritmusunk van, tehát jók vagyunk. |
| :::::::::::::::::[[File:A_B_matrix.PNG|400px]] | | :::::::::::::::::[[File:A_B_matrix.PNG|400px]] |
A lap 2013. június 13., 16:36-kori változata
2013.04.03. ZH megoldásai
1. Feladat
TODO
2. Feladat (Van megoldás)
Egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[i,j] }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n}
x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n}
-es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2) }
lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb.
(Vagyis olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k, l}
-t keresünk, amire Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{i \leq k, j \leq l}A[i,j] }
maximális.)
Megoldás
Megjegyzések a feladathoz
- Ahogy az többször is segít, úgy most is, hogy felrajzolunk magunknak egy 3x3, vagy 4x4-es táblázatot, és nézegetjük, hogyan kéne dolgozni...
- A feladatban 1-1 lépésnek vettem:
- 1 művelet (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle +,- }
) elvégzését (vagyis a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] }
3 lépés).
- 1 értéke beírása a cellába.
- 1 összehasonlítás (és esetleges cserék).
Adott az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A }
mátrix.
Létrehozunk egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B }
mátrixot (szintén Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n}
x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n}
-es).(ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow O(n^2)}
lépés)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[1,1]:= A[1,1]}
. (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 1 }
lépés)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=l=1 }
és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle aktmax=B[1,1] }
.
Először kitöltjük az 1. sort Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rightarrow B[i,1]:=B[i-1,1]+A[i,1], i=2 \dots n }
. (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 2(n-1)=O(n)}
lépés)
Majd kitöltjük az 1. oszlopot Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rightarrow B[1,i]:=B[1,i-1]+A[1,i], i=2 \dots n }
. (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 2(n-1)=O(n)}
lépés)
Minden további cellában pedig Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] }
. (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 4(n-1)(n-1)=O(n^2)}
lépés)
A keresett Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k,l }
párost pedig folyamat nyilván tartjuk: ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j] \geq aktmax \Rightarrow k=i, l=j, aktmax = B[i,j] }
. (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow n^2-1=O(n^2)}
lépés)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1+2O(n)+ 3O(n^2)=O(n^2)}
lépésszámú algoritmusunk van, tehát jók vagyunk.
- Fájl:A B matrix.PNG
3. Feladat (Van megoldás)
Kaphatjuk-e az 1,7,3,6,11,15,22,17,14,12,9 számsorozatot úgy, hogy egy (a szokásos rendezést használó) bináris keresőfában tárolt elemeket posztorder sorrendben kiolvasunk?
Megoldás
Megjegyzés a feladathoz
- Szokásos rendezést használó bináris keresőfa: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle bal(x) < x < jobb(x)}
- Postorder:
- Rekurzívan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle bal(x) \rightarrow jobb(x) \rightarrow x }
. Magyarul előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.
- Egyik fontos tulajdonsága, hogy a gyökér az mindig a (figyelt) lista végén van.
Első lépésnek írjuk fel egy táblázatba a számokat (az oszlopszámot tudjuk, ez esetben 11, sorok száma meg majd alakul...).
A továbbiakban az i. sorban jelöljük, hogy melyik elem a gyökér (=), és hogy melyek a nála kisebbek (<), avagy nagyobbak (>) (a képen keretezéssel jelzem, hogy melyik az éppen figyelt lista). Ez azért hasznos, mert a posztorder bejárás során, ezzel a technikával mindig olyan sorrendet kell kapjunk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle < < < ... < < > > ... > > = }
, vagyis nem állhat fel olyan helyzet, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ... < > < ...=}
vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ... > < > ...=}
.
- Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. (Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)
- A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
- A 3. sorban 14 lesz a gyökér, így a 14-est felrajzoljuk a 12-es jobb fiának.
- A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
- Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle < > < }
sorrend van, ebből következik, hogy ilyen fa nem létezhet.
- Fájl:Post tabla.png Fájl:Graf.png
4. Feladat
TODO
5. Feladat
TODO
6. Feladat
TODO
7. Feladat
TODO
8. Feladat
TODO