„Elektronika” változatai közötti eltérés

A VIK Wikiből
Lt (vitalap | szerkesztései)
Lt (vitalap | szerkesztései)
49. sor: 49. sor:


ezt leszámítva a gyakorlatokkal hamar lehet végezni.
ezt leszámítva a gyakorlatokkal hamar lehet végezni.
'''Tippek feladatokhoz:'''
* Ohm-törvényt, Kirchoff törvényeket (másnéven hurok ill. csomóponti törvényeket) illik ismerni, nélkülük "elég" nehéz boldogulni. Érdemes minél több hurokra felírni huroktörvényt, előbb-utóbb lesz annyi egyenleted (persze az alapképletekkel együtt) ahány ismeretlened...:)
* A diódán mindig <math>0,7V</math> feszültség esik (néha mást adnak meg <math>U_d</math>-re, akkor az) nyitóirányban, záróirányban pedig szakadásként viselkedik, azaz kb. olyan, mintha el lenne vágva a vezeték.
* Zener diódás feladatoknál a dióda mindig záróirányba van előfeszítve, ott a letörési feszültség esik a diódán, de amikor a diódán eső feszültséget kérdezik, mindig hozzá kell számolni a differenciális ellenállásán eső feszültséget. (ehhez általában meg van adva a diff. ellenállása, az áramot meg általában ki lehet számolni a másik ellenállás segítségével, ezek után <math>U=I*R</math>), tehát mondjuk egy <math>5V</math> letörési feszültségű Zener diódán ilyen <math>5,01-5,2 V</math> esik (kb.).
* A drain a pozitívabb feszültségű, a source a negatívabb. És az általunk vett egyszerű esetekben az áramkörökben a föld a legnegatívabb, a táp a legpozitívabb.
* A bipoláris tranzisztorra: <math>I_c=BI_b</math> és <math>I_e=(B+1)\cdot I_b</math>, ezekből kell kiindulni normál aktív állapotban (áltálában <math>I_b</math>-t adják meg vagy egyszerűen ki lehet számolni, <math>B</math>-t pedig mindig megadják), és miután megvan <math>I_c</math> és <math>I_e</math> így a kollektor és emitter ellenállásokon eső feszültséget egy Ohm-törvény alkalmazással meghatározhatjuk.
* MOS tranzisztorokról annyit érdemes tudni, hogy Isource=Idrain, azaz tulajdonképpen csak "egyféle" árama van. Az Igate mindig 0. Az <math>I=\frac K 2 \frac W L (U_{gs}-V_t)^2</math> képletből általában egyetlen dolog hiányzik.
* JFET-re: <math>I_d=I_{dss}\left(1-\left(\frac{U_{gs}}{V_p}\right)\right)^2</math>, ebből szintén általában csak 1 dolog hiányzik.
* A helyettesítő képeket is előszeretettel kérdezgetik mostanában erről viszont fogalmam sincs, ha valaki tudja, hogyan kell felrajzolni őket, írja be ide.
* És egy általános tanács: sokszor segíthet, ha az ábrára berajzolgatjátok, hogy hol mekkora a feszültség, az egyes ellenállásokon, diódákon és tranzisztorok átmenetein mekkora feszültség esik, illetve merre mekkora áram folyik. Könnyen feltűnhet, hogy hoppá hiszen minden megvan egy adott hurokban, vagy csomópontban és akkor a maradék áramnak merre kell folyni, vagy a hiányzó feszültségnek hol kell esnie.


= Gyakvezérek =
= Gyakvezérek =

A lap 2012. december 1., 16:30-kori változata

Sablon:Elektronika

Sablon:Tantargy

Követelmények

A félévközi jegy kialakítása a két nagy zárthelyin és a két legjobb kis zárthelyin szerzett pontok összege alapján történik. Továbbá 70%-os részvétel a gyakorlatokon, azaz 4 elfogadott gyakorlat.

Segédanyagok

megjelenítendő jegyzetnév

Feltöltés

Értelmes néven töltsétek fel, így: tantárgyrövidítése_fájltípus_dátum_csoport

  • tantárgy rövidítése: itt nézzétek meg, de ált. amilyen néven levlistája is van a tárgynak
  • fájltípus: ZH, vizsga, jegyzet, beugró..
  • dátum: értelemszerűen..pl:20100405
  • csoport: zh-hoz, vizsgához..stb..ahol van, ez is evidens


KisZH-k, beugrók

2., 4. gyakorlaton, továbbá az utolsó előadáson van kisZH, mindegyik 10 pontos.

Ezek közül a kettő legjobb eredménye számít, egyiket sem kötelező megírni.

1. ZH

Elméleti kérdések (20 pont) + Számpéldák (10 pont) -- 60 perc

  • 2011

2. ZH

Elméleti kérdések (20 pont) + Számpéldák (30 pont) -- 90 perc

  • 2011
  • 2012

Tippek

Ne illetődj meg ha gyak közben újra kell indítani a gépet,

ezt leszámítva a gyakorlatokkal hamar lehet végezni.


Tippek feladatokhoz:

  • Ohm-törvényt, Kirchoff törvényeket (másnéven hurok ill. csomóponti törvényeket) illik ismerni, nélkülük "elég" nehéz boldogulni. Érdemes minél több hurokra felírni huroktörvényt, előbb-utóbb lesz annyi egyenleted (persze az alapképletekkel együtt) ahány ismeretlened...:)
  • A diódán mindig feszültség esik (néha mást adnak meg -re, akkor az) nyitóirányban, záróirányban pedig szakadásként viselkedik, azaz kb. olyan, mintha el lenne vágva a vezeték.
  • Zener diódás feladatoknál a dióda mindig záróirányba van előfeszítve, ott a letörési feszültség esik a diódán, de amikor a diódán eső feszültséget kérdezik, mindig hozzá kell számolni a differenciális ellenállásán eső feszültséget. (ehhez általában meg van adva a diff. ellenállása, az áramot meg általában ki lehet számolni a másik ellenállás segítségével, ezek után ), tehát mondjuk egy letörési feszültségű Zener diódán ilyen esik (kb.).
  • A drain a pozitívabb feszültségű, a source a negatívabb. És az általunk vett egyszerű esetekben az áramkörökben a föld a legnegatívabb, a táp a legpozitívabb.
  • A bipoláris tranzisztorra: és , ezekből kell kiindulni normál aktív állapotban (áltálában -t adják meg vagy egyszerűen ki lehet számolni, -t pedig mindig megadják), és miután megvan és így a kollektor és emitter ellenállásokon eső feszültséget egy Ohm-törvény alkalmazással meghatározhatjuk.
  • MOS tranzisztorokról annyit érdemes tudni, hogy Isource=Idrain, azaz tulajdonképpen csak "egyféle" árama van. Az Igate mindig 0. Az képletből általában egyetlen dolog hiányzik.
  • JFET-re: , ebből szintén általában csak 1 dolog hiányzik.
  • A helyettesítő képeket is előszeretettel kérdezgetik mostanában erről viszont fogalmam sincs, ha valaki tudja, hogyan kell felrajzolni őket, írja be ide.
  • És egy általános tanács: sokszor segíthet, ha az ábrára berajzolgatjátok, hogy hol mekkora a feszültség, az egyes ellenállásokon, diódákon és tranzisztorok átmenetein mekkora feszültség esik, illetve merre mekkora áram folyik. Könnyen feltűnhet, hogy hoppá hiszen minden megvan egy adott hurokban, vagy csomópontban és akkor a maradék áramnak merre kell folyni, vagy a hiányzó feszültségnek hol kell esnie.

Gyakvezérek

Bein Márton, beinATeet.bme.hu

Czett Andor, czettATeet.bme.hu

Horváth Péter, horvathpATeet.bme.hu

Jani Lázár, jcoleeATt-online.hu

Nagy Gergely, nagygATeet.bme.hu

Ress Sándor, ressATeet.bme.hu

Riedl Tamás, tomessz89ATgmail.com

Takács Gábor, takacsATeet.bme.hu

Végh Gerzson, veghATeet.bme.hu

Kedvcsináló

Kis odafigyeléssel a tárgy könnyen teljesíthető négyesre-ötösre.