„Anal2-magic” változatai közötti eltérés
| 245. sor: | 245. sor: | ||
Analitikus fuggveny: egy intervallumon ananlitikus egy fuggveny, ha ott eloallitja a T-sora<br /> | Analitikus fuggveny: egy intervallumon ananlitikus egy fuggveny, ha ott eloallitja a T-sora<br /> | ||
=== Nevezetes fuggvenyek T-sorai === | === Nevezetes fuggvenyek T-sorai === | ||
<math>\frac {x^m} {1-x} = \sum_{k=m}^{ | <math>\frac {x^m} {1-x} = \sum_{k=m}^{\infty} x^k \rightarrow Konvergencia tartomany: |x| < 1 </math> <br /> | ||
<math>e^x = \sum_{k=0}^{ | <math>e^x = \sum_{k=0}^{\infty} \frac {x^k} { k!} \rightarrow KT: x \in R </math> <br /> | ||
<math>ln(1+x) = \sum_{k= | <math>ln(1+x) = -\sum_{k=1}^{\infty} (-1)^k \frac{x^{k}}{k} \rightarrow KT :|x| < 1 </math> <br /> | ||
<math>(1 + x)^a = \sum_{k=0}^{ | <math>(1 + x)^a = \sum_{k=0}^{\infty} \binom{a}{k}* x^k \rightarrow |x| < 1, a \in C </math> <br /> | ||
<math>\sin(x) = \sum_{k=0}^{ | <math>\sin(x) = \sum_{k=0}^{\infty} \frac {-1^k} {(2 * k + 1)!} * x^{2 * k + 1} \rightarrow KT: x \in R</math><br /> | ||
<math>\cos(x) = \sum_{k=0}^{ | <math>\cos(x) = \sum_{k=0}^{\infty} \frac {-1^k} {(2 * k)!} * x^{2 * k } \rightarrow KT: x \in R </math><br /> | ||
<math>\sinh(x) = \sum_{k=0}^{ | <math>\sinh(x) = \sum_{k=0}^{\infty} \frac {1} {(2 * k+1)!} * x^{2 * k + 1} \rightarrow KT: x \in R </math><br /> | ||
<math>\cosh(x) = \sum_{k=0}^{ | <math>\cosh(x) = \sum_{k=0}^{\infty} \frac {1} {(2 * k)!} * x^{2 * k } \rightarrow KT: x \in R </math><br /> | ||
=== Lagrange-hiba becsles === | === Lagrange-hiba becsles === | ||