„Algoritmuselmélet - ZH, 2013.04.03.” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
| 96. sor: | 96. sor: | ||
===5. Feladat=== | ===5. Feladat=== | ||
Adjacencia-mátrixával adott n csúcsú, élsúlyozott, irányítatlan gráfként ismerjük egy ország úthálózatát (a csomópontok a városok, az élek a közvetlen összeköttetések a városok között). Az élek súlya a városok közti távolságot adja meg. (Feltehetjük, hogy a távolságok egészek.) | |||
Adjon egy O(n<sup>6</sup>) lépésszámú algoritmust, ami eldönti, hogy lehetséges-e úgy kiválasztani öt várost, hogy ezektől bármely más város legfeljebb 50 kilométerre van. ''(Ezekbe a városokba lenne érdemes hókoztrókat telepíteni.)'' | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
*A megoldáshoz először Floyd algoritmussal páronként meghatározzuk az összes város távolságát, ez O(n<sup>3</sup>).<br> | |||
*A város irányítatlan gráfként van megadva, de ezen könnyen segíthetünk úgy, hogy a jelenlegi élek helyett felveszünk két irányítottat, azonos súllyal. Ez O(n<sup>2</sup>).<br> | |||
*Ezek után brute force módszerrel az összes csúcsötösre ellenőrizzük, hogy azok öten lefedik-e (legfeljebb 50 km-re vannak) az összes várost.<br> | |||
**n<sup>5</sup> városötös van, mindegyikre le kell ellenőrizni, hogy jók-e. Az ellenőrzés során végignézzük, az összes csúcsra (n db.), hogy el lehet-e érni. Ez tehát O(n<sup>5</sup>*n)=O(n<sup>6</sup>).<br> | |||
*Összességében ezért O(n<sup>6</sup>) lépésszámú az algoritmus. | |||
}} | }} | ||