„Számítógépes grafika házi feladat tutorial” változatai közötti eltérés
a code tagben jobban mutat |
|||
| 195. sor: | 195. sor: | ||
** Ha ciklikusan ismétlődő cselekvést akarunk animálni, figyeljünk rá hogy az eltelt idő lehet nagyobb mint a ciklusidő. Ha pl. 2 másodpercenként újrainduló animációnk van, ki kell tudnunk számolni, hogy 6.8 másodperc múlva hogy áll a modellünk. Ennek számítása a következő módon történhet: | ** Ha ciklikusan ismétlődő cselekvést akarunk animálni, figyeljünk rá hogy az eltelt idő lehet nagyobb mint a ciklusidő. Ha pl. 2 másodpercenként újrainduló animációnk van, ki kell tudnunk számolni, hogy 6.8 másodperc múlva hogy áll a modellünk. Ennek számítása a következő módon történhet: | ||
*** Használhatunk pl. modulo osztást valós számokkal. (Vigyázat, a % operátor csak egészekkel működik, így itt nem használható!) A példánál maradva: hogy megtudjuk, hogy az eltelt 6.8 mp után az aktuális cikluson belül hol tartunk, számoljunk a következő módon: 6.8 - ( floor(6.8/2.0) * 2.0 ) = 0.8 | *** Használhatunk pl. modulo osztást valós számokkal. (Vigyázat, a % operátor csak egészekkel működik, így itt nem használható!) A példánál maradva: hogy megtudjuk, hogy az eltelt 6.8 mp után az aktuális cikluson belül hol tartunk, számoljunk a következő módon: 6.8 - ( floor(6.8/2.0) * 2.0 ) = 0.8 | ||
*** | *** Pontosan ezt csinálja az fmod függvény is: lebegőpontos osztás maradékát adja vissza. Így fmod(6.8, 2.0) = 0.8. | ||
==Tesszelláció== | ==Tesszelláció== | ||