„Szerkesztő:Nagy Vilmos/Jelek Előadásjegyzet - 2017 (ősz)” változatai közötti eltérés

Nagy Vilmos (vitalap | szerkesztései)
Levettem az előadások számozását, mert nem szigorúan aszerint írom a jegyzetet.
Nagy Vilmos (vitalap | szerkesztései)
Jelek állapotváltozós leírása: FI jelek állapotváltozós leírása képletek
 
(12 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
1. sor: 1. sor:
'''Előszó:''' Amíg nem megy a LaTeX képletek renderelése a wikin, addig ezt feltöltöm PDF-ben is, ide: [[:File:jelek_jegyzet_vilmosnagy_latex.pdf]]
A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.
A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.


6. sor: 4. sor:


Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]]
Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]]
A képleteket próbálom átnézni, de hibák maradhatnak benne. Tipikusan DI/FI rendszernél az index elnevezések, szögeletes/kapcsos zárójelek, etc. Ha ilyet találsz, javítsd nyugodtan (vagy dobj levelet). TY!


== Megjegyzések magamnak ==
== Megjegyzések magamnak ==
64. sor: 64. sor:


== Jelek osztályozása ==
== Jelek osztályozása ==
Millióféleképpen lehet jeleket osztályozni. Ebből én csak azt jegyzetelem le, amivel foglalkozik a tárgy, a többi nem érdekes.
Millióféleképpen lehet jeleket osztályozni. Kezdjünk néhány jelöléssel:
<br/><small>(én most mindent diszkrét idejű jelekre írok le, de ugyanígy jelölöd folytonos időben is)</small>
* <math>u[k]</math> a ''k'' időbeli gerjesztés
* <math>y[k]</math> a ''k'' időbeli válasza a rendszernek
* A teljes rendszert pedig a ''W''-vel jelöljük, így: <math>W\left\{u[k]\right\} = y[k]</math>
 
=== Gerjesztések, Válaszok száma ===
A tárgy keretein belül egy gerjesztéssel, és egy válasszal rendelkező rendszerekről (SISO: Single Input Single Output) beszélünk.
 
Léteznek MIMO, MISO, SIMO (''m'', mint multiple) rendszerek is, ezekről nem lesz szó.<br/><small>A jelölés nagyrészt hasonló ott is, csak az ''u'', ''y'', etc. vektorokként értelmezendők</small>
 
=== Idő variancia ===
A ''W'' operátor lehet idő függő, és időtől nem függő. Ezek alapján megkülönböztetünk
 
* Idő variáns rendszereket
* Idő invariáns rendszereket.
 
A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy <math>W\left\{u[k]\right\} = y[k] \Rightarrow W\left\{u[k-L]\right\} = y[k-L]</math>.
 
=== Lineáris rendszerek ===
Igaz az alábbi összefüggés:
 
<math>W\left\{c_a \cdot u_a[k] + c_b \cdot u_b[k] \right\} = c_a \cdot W\left\{u_a[k]\right\} + c_b \cdot W\left\{u_b[k]\right\}</math>
 
=== Memória mentes, vagy memóriás ===
'''Def:''' Egy rendszer memória mentes, ha a válasza a ''t'' ill. ''k'' pillanatban  csak a gerjesztés <math>u(t)</math> illetve <math>u[k]</math> értékétől függ.
 
=== Kauzális, vagy akauzális ===
'''Def:''' Egy rendszer kauzális, ha a válasza a <math>t_1</math> ill. <math>k_1</math> pillanatban  csak a gerjesztés <math>u(t), \quad t<t_1</math> illetve <math>u[k], \quad k<k_1</math> értékétől függ.


=== Folytonos / Diszkrét idejű jelek ===
=== Folytonos / Diszkrét idejű jelek ===
81. sor: 109. sor:
=== Egyéb osztályozás ===
=== Egyéb osztályozás ===
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.
* Determinisztikus: minden értéke ''megjósolható'' (nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Determinisztikus: a rendszer válasza determinisztikus (''megjósolható'', nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.


128. sor: 156. sor:
DE!
DE!


==== Konvolúció ====
==== LTI rendszer válasza ====
Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát ''h[k]''-val jelöljük.
===== Nevezetes válaszok =====
<br/><small>'''Megjegyzés:''' Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni, miért is van ezekre szükség - s hogy ennyi elég-e.</small>
* Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: <math>h[k]</math>
* Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza


Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer <math>y[k]</math>:
===== Konvolúció =====
Hogyan írjuk fel egy rendszer válaszát? Általánosan leginkább sehogy. De ha a rendszerünk lineáris, s idő invariáns, akkor:


<math>y[k]= \sum_{i=0}^{\infty} x[i] \cdot h[k-i]</math>
* <math>y[k] = W\left\{u[k]\right\}</math>
 
* <math>y[k] = W\left\{\sum_{i=-\infty}^{\infty} x[i] \cdot \delta[k-i]\right\}</math>
Vegyük észre, hogy összesen az egységimpulzust cseréltük le fent a válaszára, majd ugyanúgy szuperponáljuk az egyes egységimpulzusokat.
* mivel ez lineáris rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot  W\left\{\delta[k-i]\right\}</math>
* mivel ez idő invariáns rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot  h[k-i]</math>


Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:
Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:
142. sor: 173. sor:
* lemérem ''leghátul'' a terem által adott impulzusválaszt,
* lemérem ''leghátul'' a terem által adott impulzusválaszt,
* számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.
* számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.
====== Speciális esetek ======
====== Kauzális rendszer, belépő jel esetén ======
Kis gondolkodással belátható, hogy a belépő gerjesztés miatt 0 előtt nincs gerjesztés (a szorzat egyik tagja nulla), míg k után az impulzusválasz indexe lenne negatív, s így a kauzalitás miatt az impulzusválasz nulla (a szorzat másik tagja). Összefoglalva:
<math>y[k] = \sum_{i=0}^{k} x[i] \cdot  h[k-i]</math>


=== Folytonos idejű jelek esetén ===
=== Folytonos idejű jelek esetén ===
158. sor: 195. sor:


Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához.
Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához.
Két lényeges tulajdonsága, amit megjegyzünk:
* <math>\int_{-\infty}^{\infty} \delta(t) dt = 1</math>
* <math>\int_{-\infty}^{\infty} f(\tau) \cdot \delta(t-\tau) d\tau = f(t)</math>
Az egységugrás és az egységimpulzus között itt is összefüggés van:
* <math>\delta(t) = \epsilon'(t)</math>
* <math>\epsilon(t) = \int_{-\infty}^{t} \delta(\tau) d \tau</math>
==== LTI rendszer válasza ====
===== Nevezetes válaszok =====
* Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: <math>h(t)</math>
* Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza
===== Konvolúció =====
Az a gondolatfolyam, ami a diszkrét esetben megtehető, itt is. Ezt én már nem teljesen értettem meg sosem, így csak a végeredmény:
<math>y(t) = \int_{i=-\infty}^{\infty} u(\tau) \cdot  h(t-\tau) d\tau</math>
A speciális esetek ugyanúgy felírhatók, mint a diszkrét esetben.
== Jelek állapotváltozós leírása ==
=== Diszkrét idejű jelek esetén ===
==== Állapotváltozós leírás ====
Egy rendszer általánosságban leírható az alábbi két képlettel:
* <math>\underline{x[k+1]} = \underline{A} \cdot \underline{x[k]} + \underline{B} \cdot u[k]</math>
* <math>\underline{y[k]} = \underline{C} \cdot \underline{x[k]} + \underline{D} \cdot u[k]</math>
Ennek így elsőre semmi értelme, de:
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható az impulzusválaszuk
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható lesz adott gerjesztésre a válaszuk
* és ilyet kérdeznek ZH-n, háziban.
Szóval érdemes begyakorolni, megérteni, etc.
Amennyiben a rendszerünk egy gerjesztéssel, egy válasszal, és két köztes állapotváltozóval rendelkezik, ez így néz ki:
* <math>x_1[k+1] = A_{11} \cdot x_1[k] + A_{12} \cdot x_2[k] + B_1 \cdot u[k+1]</math>
* <math>x_2[k+1] = A_{21} \cdot x_1[k] + A_{22} \cdot x_2[k] + B_2 \cdot u[k+1]</math>
* <math>y[k] = C_1 \cdot x_1[k] + C_2 \cdot x_2[k] + D \cdot u[k]</math>
==== Impulzusválasz állapotváltozós leírásból ====
Az így felírt rendszer impulzusválasza:
<math>h[k] = d \cdot \delta[k] + \epsilon[k-1] \cdot (\underline{c} \cdot \underline{\underline{A}}^{k-1} \cdot \underline{B})</math>
===== Mátrix egyszerű hatványozása =====
Ebből az <math>\underline{\underline{A}}^{k-1}</math> kiszámolása okozhat nekünk gondot. Ennek a matematikai levezetését én sosem értettem meg, és nem is kell a ketteshez (remélem).
Általánosan egy mátrix hatványozása leírható (legalábbis, nekünk ez így jó lesz):
<math>\sum_{i=0}^{k} {\lambda_{i}}^k \cdot \underline{\underline{L_i}}</math>
Ahol az egyes <math>\underline{\underline{L_i}}</math>-k az ''A'' mátrix Lagrange mátrixai, míg a <math>\lambda_{i}</math>-k az ''A'' mátrix sajátértékei.
A mátrix sajátértékeit kiszámolhatjuk, ha az alábbi egyenletet megoldjuk:
<math>\det (\mathbf{A} -\lambda \mathbf{I} )=0</math>
Azaz:
<math>((A_{11} - \lambda) \cdot (A_{22} - \lambda)) - (A_{12} \cdot A_{21}) = 0</math>
A Lagrange mátrix pedig általánosságban:
<math>\underline{\underline{L_{i}}} = \prod_{p=1}^{N} \frac{\underline{\underline{A}} - \lambda_p \cdot \underline{\underline{E}}}{\lambda_i - \lambda_p}</math>
Konkrétabban:
* <math>\underline{\underline{L_{1}}} = \frac{\underline{\underline{A}} - \lambda_2 \cdot \underline{\underline{E}}}{\lambda_1 - \lambda_2}</math>
* <math>\underline{\underline{L_{2}}} = \frac{\underline{\underline{A}} - \lambda_1 \cdot \underline{\underline{E}}}{\lambda_2 - \lambda_1}</math>
Ön-ellenőrzéshez (vagy ha éppen késésben vagy), hasznos tulajdonsága a Lagrange mátrixnak, hogy: \sum \underline{\underline{L_i}} = \underline{\underline{E}}
=== Folytonos idejű jelek esetén ===
==== Impulzusválasz állapotváltozós leírásból ====
Az így felírt rendszer impulzusválasza:
<math>h(t) = d \cdot \delta(t) + \epsilon(t) \cdot (\underline{c} \cdot e^{\underline{\underline{A}}\cdot t} \cdot \underline{B})</math>
<math>e^{\underline{\underline{A}}\cdot t} = \sum_{i=1}^{N} e^{\lambda_i \cdot t} \cdot \underline{\underline{L_{i}}}</math>