„Szerkesztő:Nagy Vilmos/Jelek Gyakorlatjegyzet - 2017 (ősz)” változatai közötti eltérés

Nagy Vilmos (vitalap | szerkesztései)
a Saját értékek, Lagrange Mátrixok: Latex mátrix elrontva
Nagy Vilmos (vitalap | szerkesztései)
Válasz: 4. gyak, 1. feladat
 
(2 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
197. sor: 197. sor:
==== Impulzusválasz ====
==== Impulzusválasz ====
<math>h[k] = \delta[k] + \epsilon[k-1] \cdot (-0.125 \cdot (-0.1^k) + 1.625 \cdot (-0.5^k))</math>
<math>h[k] = \delta[k] + \epsilon[k-1] \cdot (-0.125 \cdot (-0.1^k) + 1.625 \cdot (-0.5^k))</math>
== 4. gyakorlat ==
=== 1. feladat ===
Lásd az előző gyakorlat 3. feladatát. Adott ugyanez a rendszer, csak folytonos időben. Számoljuk ki a rendszer impulzusválaszát! A számolás módja az elődásjegyzetben van részletezve, ide csak a fontosabb rész-eredményeket vésem le.
==== Ami ugyanaz ====
Az ''A'', ''B'', ''C'', ''D'' mátrixok, a Lagrange mátrixok, az ''A'' mátrix sajátértékei azonosak.
==== Impulzusválasz ====
<math>h(t) = \delta(t) + \epsilon(t) \cdot (e^{-0.1\cdot t} \cdot -0.125 + e^{-0.5\cdot t} \cdot 1.625)</math>
==== Válasz ====
* Ha a gerjesztés: <math>u(t) = 2 \epsilon(t)</math>
* <math>y(t) = -0.25 \cdot e^{-0.1\cdot t} (\frac{e^{0.1\cdot t}}{0.1} - \frac{1}{0.1}) + 3.25 \cdot e^{-0.5\cdot t} (\frac{e^{0.5\cdot t}}{0.5} - \frac{1}{0.5})</math>
* <math>y(t) = \epsilon(t) \cdot (6 + 2.5 \cdot e^{-0.1\cdot t} - 6.5 \cdot e^{-0.5\cdot t})</math>