„Szerkesztő:Nagy Vilmos/Jelek Előadásjegyzet - 2017 (ősz)” változatai közötti eltérés
→Konvolúció: Áttolgodzva, rendesen levezetve a második előadáson elhangzottak szerint. |
→Jelek állapotváltozós leírása: FI jelek állapotváltozós leírása képletek |
||
| (9 közbenső módosítás ugyanattól a felhasználótól nincs mutatva) | |||
| 1. sor: | 1. sor: | ||
A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz. | A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz. | ||
| 6. sor: | 4. sor: | ||
Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]] | Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]] | ||
A képleteket próbálom átnézni, de hibák maradhatnak benne. Tipikusan DI/FI rendszernél az index elnevezések, szögeletes/kapcsos zárójelek, etc. Ha ilyet találsz, javítsd nyugodtan (vagy dobj levelet). TY! | |||
== Megjegyzések magamnak == | == Megjegyzések magamnak == | ||
| 68. sor: | 68. sor: | ||
* <math>u[k]</math> a ''k'' időbeli gerjesztés | * <math>u[k]</math> a ''k'' időbeli gerjesztés | ||
* <math>y[k]</math> a ''k'' időbeli válasza a rendszernek | * <math>y[k]</math> a ''k'' időbeli válasza a rendszernek | ||
* A teljes rendszert pedig a ''W''-vel jelöljük, így: <math>W | * A teljes rendszert pedig a ''W''-vel jelöljük, így: <math>W\left\{u[k]\right\} = y[k]</math> | ||
=== Gerjesztések, Válaszok száma === | === Gerjesztések, Válaszok száma === | ||
| 81. sor: | 81. sor: | ||
* Idő invariáns rendszereket. | * Idő invariáns rendszereket. | ||
A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy <math>W | A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy <math>W\left\{u[k]\right\} = y[k] \Rightarrow W\left\{u[k-L]\right\} = y[k-L]</math>. | ||
=== Lineáris rendszerek === | === Lineáris rendszerek === | ||
Igaz az alábbi összefüggés: | Igaz az alábbi összefüggés: | ||
<math>W | <math>W\left\{c_a \cdot u_a[k] + c_b \cdot u_b[k] \right\} = c_a \cdot W\left\{u_a[k]\right\} + c_b \cdot W\left\{u_b[k]\right\}</math> | ||
=== Memória mentes, vagy memóriás === | === Memória mentes, vagy memóriás === | ||
| 164. sor: | 164. sor: | ||
Hogyan írjuk fel egy rendszer válaszát? Általánosan leginkább sehogy. De ha a rendszerünk lineáris, s idő invariáns, akkor: | Hogyan írjuk fel egy rendszer válaszát? Általánosan leginkább sehogy. De ha a rendszerünk lineáris, s idő invariáns, akkor: | ||
* <math>y[k] = W | * <math>y[k] = W\left\{u[k]\right\}</math> | ||
* <math>y[k] = W | * <math>y[k] = W\left\{\sum_{i=-\infty}^{\infty} x[i] \cdot \delta[k-i]\right\}</math> | ||
* mivel ez lineáris rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot W | * mivel ez lineáris rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot W\left\{\delta[k-i]\right\}</math> | ||
* mivel ez idő invariáns rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot h[k-i]</math> | * mivel ez idő invariáns rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot h[k-i]</math> | ||
| 195. sor: | 195. sor: | ||
Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához. | Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához. | ||
Két lényeges tulajdonsága, amit megjegyzünk: | |||
* <math>\int_{-\infty}^{\infty} \delta(t) dt = 1</math> | |||
* <math>\int_{-\infty}^{\infty} f(\tau) \cdot \delta(t-\tau) d\tau = f(t)</math> | |||
Az egységugrás és az egységimpulzus között itt is összefüggés van: | |||
* <math>\delta(t) = \epsilon'(t)</math> | |||
* <math>\epsilon(t) = \int_{-\infty}^{t} \delta(\tau) d \tau</math> | |||
==== LTI rendszer válasza ==== | |||
===== Nevezetes válaszok ===== | |||
* Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: <math>h(t)</math> | |||
* Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza | |||
===== Konvolúció ===== | |||
Az a gondolatfolyam, ami a diszkrét esetben megtehető, itt is. Ezt én már nem teljesen értettem meg sosem, így csak a végeredmény: | |||
<math>y(t) = \int_{i=-\infty}^{\infty} u(\tau) \cdot h(t-\tau) d\tau</math> | |||
A speciális esetek ugyanúgy felírhatók, mint a diszkrét esetben. | |||
== Jelek állapotváltozós leírása == | |||
=== Diszkrét idejű jelek esetén === | |||
==== Állapotváltozós leírás ==== | |||
Egy rendszer általánosságban leírható az alábbi két képlettel: | |||
* <math>\underline{x[k+1]} = \underline{A} \cdot \underline{x[k]} + \underline{B} \cdot u[k]</math> | |||
* <math>\underline{y[k]} = \underline{C} \cdot \underline{x[k]} + \underline{D} \cdot u[k]</math> | |||
Ennek így elsőre semmi értelme, de: | |||
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható az impulzusválaszuk | |||
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható lesz adott gerjesztésre a válaszuk | |||
* és ilyet kérdeznek ZH-n, háziban. | |||
Szóval érdemes begyakorolni, megérteni, etc. | |||
Amennyiben a rendszerünk egy gerjesztéssel, egy válasszal, és két köztes állapotváltozóval rendelkezik, ez így néz ki: | |||
* <math>x_1[k+1] = A_{11} \cdot x_1[k] + A_{12} \cdot x_2[k] + B_1 \cdot u[k+1]</math> | |||
* <math>x_2[k+1] = A_{21} \cdot x_1[k] + A_{22} \cdot x_2[k] + B_2 \cdot u[k+1]</math> | |||
* <math>y[k] = C_1 \cdot x_1[k] + C_2 \cdot x_2[k] + D \cdot u[k]</math> | |||
==== Impulzusválasz állapotváltozós leírásból ==== | |||
Az így felírt rendszer impulzusválasza: | |||
<math>h[k] = d \cdot \delta[k] + \epsilon[k-1] \cdot (\underline{c} \cdot \underline{\underline{A}}^{k-1} \cdot \underline{B})</math> | |||
===== Mátrix egyszerű hatványozása ===== | |||
Ebből az <math>\underline{\underline{A}}^{k-1}</math> kiszámolása okozhat nekünk gondot. Ennek a matematikai levezetését én sosem értettem meg, és nem is kell a ketteshez (remélem). | |||
Általánosan egy mátrix hatványozása leírható (legalábbis, nekünk ez így jó lesz): | |||
<math>\sum_{i=0}^{k} {\lambda_{i}}^k \cdot \underline{\underline{L_i}}</math> | |||
Ahol az egyes <math>\underline{\underline{L_i}}</math>-k az ''A'' mátrix Lagrange mátrixai, míg a <math>\lambda_{i}</math>-k az ''A'' mátrix sajátértékei. | |||
A mátrix sajátértékeit kiszámolhatjuk, ha az alábbi egyenletet megoldjuk: | |||
<math>\det (\mathbf{A} -\lambda \mathbf{I} )=0</math> | |||
Azaz: | |||
<math>((A_{11} - \lambda) \cdot (A_{22} - \lambda)) - (A_{12} \cdot A_{21}) = 0</math> | |||
A Lagrange mátrix pedig általánosságban: | |||
<math>\underline{\underline{L_{i}}} = \prod_{p=1}^{N} \frac{\underline{\underline{A}} - \lambda_p \cdot \underline{\underline{E}}}{\lambda_i - \lambda_p}</math> | |||
Konkrétabban: | |||
* <math>\underline{\underline{L_{1}}} = \frac{\underline{\underline{A}} - \lambda_2 \cdot \underline{\underline{E}}}{\lambda_1 - \lambda_2}</math> | |||
* <math>\underline{\underline{L_{2}}} = \frac{\underline{\underline{A}} - \lambda_1 \cdot \underline{\underline{E}}}{\lambda_2 - \lambda_1}</math> | |||
Ön-ellenőrzéshez (vagy ha éppen késésben vagy), hasznos tulajdonsága a Lagrange mátrixnak, hogy: \sum \underline{\underline{L_i}} = \underline{\underline{E}} | |||
=== Folytonos idejű jelek esetén === | |||
==== Impulzusválasz állapotváltozós leírásból ==== | |||
Az így felírt rendszer impulzusválasza: | |||
<math>h(t) = d \cdot \delta(t) + \epsilon(t) \cdot (\underline{c} \cdot e^{\underline{\underline{A}}\cdot t} \cdot \underline{B})</math> | |||
<math>e^{\underline{\underline{A}}\cdot t} = \sum_{i=1}^{N} e^{\lambda_i \cdot t} \cdot \underline{\underline{L_{i}}}</math> | |||