„Szerkesztő:Nagy Vilmos/Jelek Előadásjegyzet - 2017 (ősz)” változatai közötti eltérés

A VIK Wikiből
(→‎Példa: index javítás)
(→‎Jelek állapotváltozós leírása: FI jelek állapotváltozós leírása képletek)
 
(14 közbenső módosítás ugyanattól a szerkesztőtől nincs mutatva)
1. sor: 1. sor:
'''Előszó:''' Amíg nem megy a LaTeX képletek renderelése a wikin, addig ezt feltöltöm PDF-ben is, ide: [[:File:jelek_jegyzet_vilmosnagy_latex.pdf]]
A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.
A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.


6. sor: 4. sor:


Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]]
Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: [[Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)]]
A képleteket próbálom átnézni, de hibák maradhatnak benne. Tipikusan DI/FI rendszernél az index elnevezések, szögeletes/kapcsos zárójelek, etc. Ha ilyet találsz, javítsd nyugodtan (vagy dobj levelet). TY!


== Megjegyzések magamnak ==
== Megjegyzések magamnak ==
11. sor: 11. sor:
* az első gyakon elhangzott, hogy az Euler-összefüggések még hasznosak lesznek. [https://hu.wikipedia.org/wiki/Euler-k%C3%A9plet#Kapcsolata_a_trigonometri.C3.A1val Innen] a szinus és a koszinus kifejezése, ni.
* az első gyakon elhangzott, hogy az Euler-összefüggések még hasznosak lesznek. [https://hu.wikipedia.org/wiki/Euler-k%C3%A9plet#Kapcsolata_a_trigonometri.C3.A1val Innen] a szinus és a koszinus kifejezése, ni.


== 1. előadás - Bevezetés ==
== Bevezetés ==
=== Bevezetés ===
A tárgy keretében ''fizikai'' folyamatokat szeretnénk leírni. A fizikait értsd, hogy kb. bármilyen olyan folyamatot, amiben mérhető mennyiségek szerepelnek. Ezeket a mennyiségeket változókkal írjuk le. Ezekből a változókból, ha fizikai dimenzió nélkül kezeljük, lesznek a jeleink. Ilyen folyamat lehet, például:
A tárgy keretében ''fizikai'' folyamatokat szeretnénk leírni. A fizikait értsd, hogy kb. bármilyen olyan folyamatot, amiben mérhető mennyiségek szerepelnek. Ezeket a mennyiségeket változókkal írjuk le. Ezekből a változókból, ha fizikai dimenzió nélkül kezeljük, lesznek a jeleink. Ilyen folyamat lehet, például:
* Az egyetem egyes évfolyamaira beiratkozott hallgatók száma.
* Az egyetem egyes évfolyamaira beiratkozott hallgatók száma.
19. sor: 18. sor:
* stb.
* stb.


=== Rendszerek ábrázolása ===
== Rendszerek ábrázolása ==
Az alábbi ábrán egy egyszerű rendszer ábrázolása látható.  
Az alábbi ábrán egy egyszerű rendszer ábrázolása látható.


''<small>(szerk.: Remélem nem csesztem el benne semmit, az x[k], meg x[k+1] jelölés nem tuti. http://draw.io-n rajzolva, forrás itt: https://drive.google.com/open?id=0BzSJOKSJE6qqUUlwZVk0T3JYYUU )</small>''
''<small>(szerk.: Remélem nem csesztem el benne semmit, az x[k], meg x[k+1] jelölés nem tuti. http://draw.io-n rajzolva, forrás itt: https://drive.google.com/open?id=0BzSJOKSJE6qqUUlwZVk0T3JYYUU )</small>''
26. sor: 25. sor:
[[File:jelek_jegyzet_vilmosnagy_rendszerek_ábrázolása.png]]
[[File:jelek_jegyzet_vilmosnagy_rendszerek_ábrázolása.png]]


==== Példa ====
=== Példa ===
A fenti rajz lehet az ábrája az alábbi rendszer-modellnek.
A fenti rajz lehet az ábrája az alábbi rendszer-modellnek.


64. sor: 63. sor:
Egyébként such wow, a fenti felállásban az ''u'' a gerjesztés, az ''y'' pedig a felvázolt rendszer válasza, s primitív rendszereket kell is majd hasonlóan számolgatni a háziban.
Egyébként such wow, a fenti felállásban az ''u'' a gerjesztés, az ''y'' pedig a felvázolt rendszer válasza, s primitív rendszereket kell is majd hasonlóan számolgatni a háziban.


=== Jelek osztályozása ===
== Jelek osztályozása ==
Millióféleképpen lehet jeleket osztályozni. Ebből én csak azt jegyzetelem le, amivel foglalkozik a tárgy, a többi nem érdekes.
Millióféleképpen lehet jeleket osztályozni. Kezdjünk néhány jelöléssel:
<br/><small>(én most mindent diszkrét idejű jelekre írok le, de ugyanígy jelölöd folytonos időben is)</small>
* <math>u[k]</math> a ''k'' időbeli gerjesztés
* <math>y[k]</math> a ''k'' időbeli válasza a rendszernek
* A teljes rendszert pedig a ''W''-vel jelöljük, így: <math>W\left\{u[k]\right\} = y[k]</math>
 
=== Gerjesztések, Válaszok száma ===
A tárgy keretein belül egy gerjesztéssel, és egy válasszal rendelkező rendszerekről (SISO: Single Input Single Output) beszélünk.
 
Léteznek MIMO, MISO, SIMO (''m'', mint multiple) rendszerek is, ezekről nem lesz szó.<br/><small>A jelölés nagyrészt hasonló ott is, csak az ''u'', ''y'', etc. vektorokként értelmezendők</small>
 
=== Idő variancia ===
A ''W'' operátor lehet idő függő, és időtől nem függő. Ezek alapján megkülönböztetünk
 
* Idő variáns rendszereket
* Idő invariáns rendszereket.
 
A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy <math>W\left\{u[k]\right\} = y[k] \Rightarrow W\left\{u[k-L]\right\} = y[k-L]</math>.
 
=== Lineáris rendszerek ===
Igaz az alábbi összefüggés:
 
<math>W\left\{c_a \cdot u_a[k] + c_b \cdot u_b[k] \right\} = c_a \cdot W\left\{u_a[k]\right\} + c_b \cdot W\left\{u_b[k]\right\}</math>
 
=== Memória mentes, vagy memóriás ===
'''Def:''' Egy rendszer memória mentes, ha a válasza a ''t'' ill. ''k'' pillanatban  csak a gerjesztés <math>u(t)</math> illetve <math>u[k]</math> értékétől függ.
 
=== Kauzális, vagy akauzális ===
'''Def:''' Egy rendszer kauzális, ha a válasza a <math>t_1</math> ill. <math>k_1</math> pillanatban  csak a gerjesztés <math>u(t), \quad t<t_1</math> illetve <math>u[k], \quad k<k_1</math> értékétől függ.


==== Folytonos / Diszkrét idejű jelek ====
=== Folytonos / Diszkrét idejű jelek ===
Beszélhetünk időben folytonos, vagy diszkrét idejű jelekről.
Beszélhetünk időben folytonos, vagy diszkrét idejű jelekről.
* Folytonos idejű, jelölése <math>x(t)</math> <br/> A folytonos idejű jelek minden <math>t \in \mathbb{R}</math> értékben értelmezettek.
* Folytonos idejű, jelölése <math>x(t)</math> <br/> A folytonos idejű jelek minden <math>t \in \mathbb{R}</math> értékben értelmezettek.
* Diszkrét idejű, jelölése <math>x[k]</math> <br/> A diszkrét idejű jelek csak a <math>k \in \mathbb{Z}</math> egész számok helyén értelmezettek.
* Diszkrét idejű, jelölése <math>x[k]</math> <br/> A diszkrét idejű jelek csak a <math>k \in \mathbb{Z}</math> egész számok helyén értelmezettek.


==== Periodicitás ====
=== Periodicitás ===
===== Folytonos időben =====
==== Folytonos időben ====
Egy folytonos idejű jel periodikus akkor, és csak akkor, ha létezik <math>T \in \mathbb{R}</math> periódusidő, hogy
Egy folytonos idejű jel periodikus akkor, és csak akkor, ha létezik <math>T \in \mathbb{R}</math> periódusidő, hogy
<math>x(t) = x(t + T)</math> minden ''t''-re.
<math>x(t) = x(t + T)</math> minden ''t''-re.
===== Diszkrét időben =====
==== Diszkrét időben ====
Egy diszkrét idejű jel periodikus akkor, és csak akkor, ha létezik <math>L \in \mathbb{Z}</math> periódusidő, hogy
Egy diszkrét idejű jel periodikus akkor, és csak akkor, ha létezik <math>L \in \mathbb{Z}</math> periódusidő, hogy
<math>x[k] = x[k + L]</math> minden ''k''-ra.
<math>x[k] = x[k + L]</math> minden ''k''-ra.


==== Egyéb osztályozás ====
=== Egyéb osztályozás ===
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.    
Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.
* Determinisztikus: minden értéke ''megjósolható'' (nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Determinisztikus: a rendszer válasza determinisztikus (''megjósolható'', nem véletlenszerű)<br/><small>ez nyilván nem így hangzik matematikusul, de nekünk jó lesz</small>
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.
* Belépő: <math>x(t) = 0</math> minden <math>t<0</math> esetén.


88. sor: 115. sor:


Továbbá megkülönböztetünk páros és páratlan jeleket:
Továbbá megkülönböztetünk páros és páratlan jeleket:
* páros: <math>x(t) = x(-t)</math> (az ''x'' tengelyre szimmetrikus)
* páros: <math>x(t) = x(-t)</math> <small>(az ''y'' tengelyre szimmetrikus)</small>
* páratlan: <math>x(t) = -x(-t)</math> (az origóra szimmetrikus)
* páratlan: <math>x(t) = -x(-t)</math> <small>(az origóra szimmetrikus)</small>


'''Állítás:''' Minden jel felírható egy páros és egy páratlan jel összegére.
'''Állítás:''' Minden jel felírható egy páros és egy páratlan jel összegére.
<br/> '''Bizonyítás:''' Nem bizonyítjuk.
<br/> '''Bizonyítás:''' Nem bizonyítjuk.


=== Jelek felírása ===
== Jelek felírása ==
==== Diszkrét idejű jelek esetén ====
=== Diszkrét idejű jelek esetén ===
===== Speciális jelek =====
==== Speciális jelek ====
====== Egységimpulzus ======
===== Egységimpulzus =====
<math>\delta[k]=\begin{cases} 1 & k=0 \\ 0 &\text{egyébként}\end{cases}</math>
<math>\delta[k]=\begin{cases} 1 & k=0 \\ 0 &\text{egyébként}\end{cases}</math>
====== Egységugrás ======
===== Egységugrás =====
<math>\epsilon[k]=\begin{cases} 0 & k<0 \\ 1 & k\geq0 \end{cases}</math>
<math>\epsilon[k]=\begin{cases} 0 & k<0 \\ 1 & k\geq0 \end{cases}</math>


'''Állítás:''' Minden DI jel megadható egységimpulzusok szuperpozíciójaként.  
'''Állítás:''' Minden DI jel megadható egységimpulzusok szuperpozíciójaként.
<br/> '''Bizonyítás:''' Nem bizonyítjuk.
<br/> '''Bizonyítás:''' Nem bizonyítjuk.


====== Példa 1 ======
===== Példa 1 =====
Az egységugrás felírható egységimpulzusok összegeként:
Az egységugrás felírható egységimpulzusok összegeként:
<math>\epsilon[k]= \sum_{i=-\infty}^{k} \delta[i]</math>
<math>\epsilon[k]= \sum_{i=-\infty}^{k} \delta[i]</math>
''<small>(szerk.: ezt ellenőrizd le!)</small>''
''<small>(szerk.: ezt ellenőrizd le!)</small>''


====== Példa 2 ======
===== Példa 2 =====
Vegyük a következő jelet:
Vegyük a következő jelet:


128. sor: 155. sor:


DE!
DE!
==== LTI rendszer válasza ====
===== Nevezetes válaszok =====
* Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: <math>h[k]</math>
* Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza


===== Konvolúció =====
===== Konvolúció =====
Tegyük fel, hogy a rendszerek válasza is szuperpozíciónálható. Továbbá tegyük fel, hogy egy rendszer egységimpulzusra adott válaszát ''h[k]''-val jelöljük.
Hogyan írjuk fel egy rendszer válaszát? Általánosan leginkább sehogy. De ha a rendszerünk lineáris, s idő invariáns, akkor:
<br/><small>'''Megjegyzés:''' Ez így általánosságban nem igaz. Biztosan szükséges, hogy a rendszer lineáris, s időinvariáns legyen (lehet, még ez sem elég). Ezekről később lesz szó, ott érdemes végiggondolni, miért is van ezekre szükség - s hogy ennyi elég-e.</small>


Na, és itt jön a magic, mert (az előző példa gondolatmenetét részben folytatva) ezek után ki merjük mondani, hogy a rendszer <math>y[k]</math>:
* <math>y[k] = W\left\{u[k]\right\}</math>
* <math>y[k] = W\left\{\sum_{i=-\infty}^{\infty} x[i] \cdot \delta[k-i]\right\}</math>
* mivel ez lineáris rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot  W\left\{\delta[k-i]\right\}</math>
* mivel ez idő invariáns rendszer, így: <math>y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot  h[k-i]</math>


<math>y[k]= \sum_{i=0}^{\infty} x[i] \cdot h[k-i]</math>
Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:
* egységimpulzussal ''gerjesztem'' a termet (tapsolok),
* lemérem ''leghátul'' a terem által adott impulzusválaszt,
* számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.


Vegyük észre, hogy összesen az egységimpulzust cseréltük le fent a válaszára, majd ugyanúgy szuperponáljuk az egyes egységimpulzusokat.
====== Speciális esetek ======
====== Kauzális rendszer, belépő jel esetén ======
Kis gondolkodással belátható, hogy a belépő gerjesztés miatt 0 előtt nincs gerjesztés (a szorzat egyik tagja nulla), míg k után az impulzusválasz indexe lenne negatív, s így a kauzalitás miatt az impulzusválasz nulla (a szorzat másik tagja). Összefoglalva:


Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:
<math>y[k] = \sum_{i=0}^{k} x[i] \cdot  h[k-i]</math>
* egységimpulzussal ''gerjesztem'' a termet (tapsolok),
* lemérem ''leghátul'' a terem által adott impulzusválaszt,
* számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.


==== Folytonos idejű jelek esetén ====
=== Folytonos idejű jelek esetén ===
===== Speciális jelek =====
==== Speciális jelek ====
====== Egységugrás ======
===== Egységugrás =====
<math>\epsilon(t)=\begin{cases} 0 & t<0 \\ 1 & t>0 \end{cases}</math>
<math>\epsilon(t)=\begin{cases} 0 & t<0 \\ 1 & t>0 \end{cases}</math>


'''Megjegyzés:''' Az <math>\epsilon(0)</math>-t nem definiáljuk, a tárgy keretében nem lesz rá szükség. Ha szeretnénk elképzelhetjük 0.5-nek, balról/jobbról 0/1-nek, etc.
'''Megjegyzés:''' Az <math>\epsilon(0)</math>-t nem definiáljuk, a tárgy keretében nem lesz rá szükség. Ha szeretnénk elképzelhetjük 0.5-nek, balról/jobbról 0/1-nek, etc.


====== Egységimpulzus ======
===== Egységimpulzus =====
Írjuk fel az <math>\epsilon(t, T)</math> függvényt a következőképpen:
Írjuk fel az <math>\epsilon(t, T)</math> függvényt a következőképpen:


159. sor: 195. sor:


Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához.
Az egységimpulzust nevezzük annak, ha az <math>\epsilon(t, T)</math>-ben a T tart nullához.
Két lényeges tulajdonsága, amit megjegyzünk:
* <math>\int_{-\infty}^{\infty} \delta(t) dt = 1</math>
* <math>\int_{-\infty}^{\infty} f(\tau) \cdot \delta(t-\tau) d\tau = f(t)</math>
Az egységugrás és az egységimpulzus között itt is összefüggés van:
* <math>\delta(t) = \epsilon'(t)</math>
* <math>\epsilon(t) = \int_{-\infty}^{t} \delta(\tau) d \tau</math>
==== LTI rendszer válasza ====
===== Nevezetes válaszok =====
* Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: <math>h(t)</math>
* Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza
===== Konvolúció =====
Az a gondolatfolyam, ami a diszkrét esetben megtehető, itt is. Ezt én már nem teljesen értettem meg sosem, így csak a végeredmény:
<math>y(t) = \int_{i=-\infty}^{\infty} u(\tau) \cdot  h(t-\tau) d\tau</math>
A speciális esetek ugyanúgy felírhatók, mint a diszkrét esetben.
== Jelek állapotváltozós leírása ==
=== Diszkrét idejű jelek esetén ===
==== Állapotváltozós leírás ====
Egy rendszer általánosságban leírható az alábbi két képlettel:
* <math>\underline{x[k+1]} = \underline{A} \cdot \underline{x[k]} + \underline{B} \cdot u[k]</math>
* <math>\underline{y[k]} = \underline{C} \cdot \underline{x[k]} + \underline{D} \cdot u[k]</math>
Ennek így elsőre semmi értelme, de:
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható az impulzusválaszuk
* ha így írunk fel rendszereket, akkor egyszerűen kiszámolható lesz adott gerjesztésre a válaszuk
* és ilyet kérdeznek ZH-n, háziban.
Szóval érdemes begyakorolni, megérteni, etc.
Amennyiben a rendszerünk egy gerjesztéssel, egy válasszal, és két köztes állapotváltozóval rendelkezik, ez így néz ki:
* <math>x_1[k+1] = A_{11} \cdot x_1[k] + A_{12} \cdot x_2[k] + B_1 \cdot u[k+1]</math>
* <math>x_2[k+1] = A_{21} \cdot x_1[k] + A_{22} \cdot x_2[k] + B_2 \cdot u[k+1]</math>
* <math>y[k] = C_1 \cdot x_1[k] + C_2 \cdot x_2[k] + D \cdot u[k]</math>
==== Impulzusválasz állapotváltozós leírásból ====
Az így felírt rendszer impulzusválasza:
<math>h[k] = d \cdot \delta[k] + \epsilon[k-1] \cdot (\underline{c} \cdot \underline{\underline{A}}^{k-1} \cdot \underline{B})</math>
===== Mátrix egyszerű hatványozása =====
Ebből az <math>\underline{\underline{A}}^{k-1}</math> kiszámolása okozhat nekünk gondot. Ennek a matematikai levezetését én sosem értettem meg, és nem is kell a ketteshez (remélem).
Általánosan egy mátrix hatványozása leírható (legalábbis, nekünk ez így jó lesz):
<math>\sum_{i=0}^{k} {\lambda_{i}}^k \cdot \underline{\underline{L_i}}</math>
Ahol az egyes <math>\underline{\underline{L_i}}</math>-k az ''A'' mátrix Lagrange mátrixai, míg a <math>\lambda_{i}</math>-k az ''A'' mátrix sajátértékei.
A mátrix sajátértékeit kiszámolhatjuk, ha az alábbi egyenletet megoldjuk:
<math>\det (\mathbf{A} -\lambda \mathbf{I} )=0</math>
Azaz:
<math>((A_{11} - \lambda) \cdot (A_{22} - \lambda)) - (A_{12} \cdot A_{21}) = 0</math>
A Lagrange mátrix pedig általánosságban:
<math>\underline{\underline{L_{i}}} = \prod_{p=1}^{N} \frac{\underline{\underline{A}} - \lambda_p \cdot \underline{\underline{E}}}{\lambda_i - \lambda_p}</math>
Konkrétabban:
* <math>\underline{\underline{L_{1}}} = \frac{\underline{\underline{A}} - \lambda_2 \cdot \underline{\underline{E}}}{\lambda_1 - \lambda_2}</math>
* <math>\underline{\underline{L_{2}}} = \frac{\underline{\underline{A}} - \lambda_1 \cdot \underline{\underline{E}}}{\lambda_2 - \lambda_1}</math>
Ön-ellenőrzéshez (vagy ha éppen késésben vagy), hasznos tulajdonsága a Lagrange mátrixnak, hogy: \sum \underline{\underline{L_i}} = \underline{\underline{E}}
=== Folytonos idejű jelek esetén ===
==== Impulzusválasz állapotváltozós leírásból ====
Az így felírt rendszer impulzusválasza:
<math>h(t) = d \cdot \delta(t) + \epsilon(t) \cdot (\underline{c} \cdot e^{\underline{\underline{A}}\cdot t} \cdot \underline{B})</math>
<math>e^{\underline{\underline{A}}\cdot t} = \sum_{i=1}^{N} e^{\lambda_i \cdot t} \cdot \underline{\underline{L_{i}}}</math>

A lap jelenlegi, 2017. szeptember 26., 14:37-kori változata

A félévben tervezem letisztázni ide a Jelek (Rendszerelmélet) jegyzeteimet - lehetőleg valami olyan formában, ami az első ZH előtt segít rendesen összefoglalni az anyagot, s egy ponthatáros kettest összehoz.

Ha a félév végéig sikerül rendesen csinálnom (igyekszem :-)), s legalább az első ZHig (~hetedeik hét) le van tisztázva az anyag, akkor közkincsé teszem, s mehet a Rendszerelmélet lap alá. Addig viszont szeretném a személyes játszóteremnek meghagyni (nemhiába szerkesztői subpage ez), s bármit hezitálás nélkül visszavonok, ami nem tetszik. Ha hibát találsz, vagy kérdésed van, a Vitalapon állok rendelkezésre. (vagy a vilmos.nagy@outlook.com email címen)

Ez az oldal az előadáson elhangzott dolgokat, s a gyakorlatokon elhangzott elméleti anyagot tartalmazza - már, amit felfogtam belőle. Próbálom időrendi sorrendben tartani, de ha valami szerintem más sorrendben logikus, akkor kérdés nélkül megcserélem. Az gyakorlatjegyzetemet erre találod: Szerkesztő:Nagy_Vilmos/Jelek_Gyakorlatjegyzet_-_2017_(ősz)

A képleteket próbálom átnézni, de hibák maradhatnak benne. Tipikusan DI/FI rendszernél az index elnevezések, szögeletes/kapcsos zárójelek, etc. Ha ilyet találsz, javítsd nyugodtan (vagy dobj levelet). TY!

Megjegyzések magamnak

Ezeket csak felvésem ide, hogy ne vesszen el. Még nem tudom, hova kellene ezeket bedolgozni...

  • az első gyakon elhangzott, hogy az Euler-összefüggések még hasznosak lesznek. Innen a szinus és a koszinus kifejezése, ni.

Bevezetés

A tárgy keretében fizikai folyamatokat szeretnénk leírni. A fizikait értsd, hogy kb. bármilyen olyan folyamatot, amiben mérhető mennyiségek szerepelnek. Ezeket a mennyiségeket változókkal írjuk le. Ezekből a változókból, ha fizikai dimenzió nélkül kezeljük, lesznek a jeleink. Ilyen folyamat lehet, például:

  • Az egyetem egyes évfolyamaira beiratkozott hallgatók száma.
  • Híd deformációja a terhelés függvényében
  • Lift sebessége a magasság függvényében, ha az ötödik emeletre akarunk menni.
  • stb.

Rendszerek ábrázolása

Az alábbi ábrán egy egyszerű rendszer ábrázolása látható.

(szerk.: Remélem nem csesztem el benne semmit, az x[k], meg x[k+1] jelölés nem tuti. http://draw.io-n rajzolva, forrás itt: https://drive.google.com/open?id=0BzSJOKSJE6qqUUlwZVk0T3JYYUU )

Jelek jegyzet vilmosnagy rendszerek ábrázolása.png

Példa

A fenti rajz lehet az ábrája az alábbi rendszer-modellnek.

Egy egyszerű egyetemet, s az egyetemen tanuló hallgatók számát szeretnénk modellezni. Négy jelet veszünk fel: x1, x2, x3, y. Ebből az x-ek az adott évben az adott évfolyamra járó hallgatók száma, míg az y az adott évben végző hallgatók száma. Az x1 értéke egyenlő az adott évben beiratkozó hallgatók és az előző évben az első évfolyamot nem teljesítő hallgatók számával. Amennyiben az újonnan beiratkozókat u-val jelöljük, míg az egyes évfolyamokon megbukottakat a-val, sikeresen teljesítőket b-vel (ezt most önkényesen jelölöm a illetve b-vel):

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_1[k+1] = a_1 \cdot x_1[k] + u[k+1] }
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_2[k+1] = a_2 \cdot x_2[k] + b_1 \cdot x_1[k] }
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_3[k+1] = a_3 \cdot x_3[k] + b_2 \cdot x_2[k] }
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = b_3 \cdot x_3[k]}

(szerk.: remélem semmit nem írtam el, de ezt a gyakorlat után még utánaszámolom. Amíg nem javítják meg a wiki-t, addig itt le tudod renderelni ezeket: http://quicklatex.com/)

Ebből ilyen szép táblázatot lehet rajzolni, ha:

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[k] = 500} minden k-ra
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_n = 0.3} minden n-re
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b_n = 0.65} minden n-re

(vegyük észre, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_n + b_n} nem szükségszerűen 1. A maradékot kirúgták, elment, etc. belefér a modellbe).

Év (k) Elsőévesek Másodévesek Harmadévesek Végzők
1 500 0 0 0
2 650 325 0 0
3 695 520 211 0
4 709 608 401 137
5 713 643 515 260
5 714 656 572 335

Nem számolom tovább, de ha ügyes vagy, néhány év múlva egy ~konstans értékre kéne beállnia a végzősök számának (~400 körül, valahol). Ez a tárgy ilyen (meg ennél bonyolultabb) modellekről, s azoknak az ennél egyszerűbb kiszámolásáról fog szólni.

Egyébként such wow, a fenti felállásban az u a gerjesztés, az y pedig a felvázolt rendszer válasza, s primitív rendszereket kell is majd hasonlóan számolgatni a háziban.

Jelek osztályozása

Millióféleképpen lehet jeleket osztályozni. Kezdjünk néhány jelöléssel:
(én most mindent diszkrét idejű jelekre írok le, de ugyanígy jelölöd folytonos időben is)

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[k]} a k időbeli gerjesztés
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k]} a k időbeli válasza a rendszernek
  • A teljes rendszert pedig a W-vel jelöljük, így: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W\left\{u[k]\right\} = y[k]}

Gerjesztések, Válaszok száma

A tárgy keretein belül egy gerjesztéssel, és egy válasszal rendelkező rendszerekről (SISO: Single Input Single Output) beszélünk.

Léteznek MIMO, MISO, SIMO (m, mint multiple) rendszerek is, ezekről nem lesz szó.
A jelölés nagyrészt hasonló ott is, csak az u, y, etc. vektorokként értelmezendők

Idő variancia

A W operátor lehet idő függő, és időtől nem függő. Ezek alapján megkülönböztetünk

  • Idő variáns rendszereket
  • Idő invariáns rendszereket.

A tárgy az utóbbiakkal foglalkozik. Itt mindig feltehetjük, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W\left\{u[k]\right\} = y[k] \Rightarrow W\left\{u[k-L]\right\} = y[k-L]} .

Lineáris rendszerek

Igaz az alábbi összefüggés:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W\left\{c_a \cdot u_a[k] + c_b \cdot u_b[k] \right\} = c_a \cdot W\left\{u_a[k]\right\} + c_b \cdot W\left\{u_b[k]\right\}}

Memória mentes, vagy memóriás

Def: Egy rendszer memória mentes, ha a válasza a t ill. k pillanatban csak a gerjesztés Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(t)} illetve Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[k]} értékétől függ.

Kauzális, vagy akauzális

Def: Egy rendszer kauzális, ha a válasza a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t_1} ill. Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k_1} pillanatban csak a gerjesztés Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(t), \quad t<t_1} illetve Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[k], \quad k<k_1} értékétől függ.

Folytonos / Diszkrét idejű jelek

Beszélhetünk időben folytonos, vagy diszkrét idejű jelekről.

  • Folytonos idejű, jelölése Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t)}
    A folytonos idejű jelek minden Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t \in \mathbb{R}} értékben értelmezettek.
  • Diszkrét idejű, jelölése Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]}
    A diszkrét idejű jelek csak a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k \in \mathbb{Z}} egész számok helyén értelmezettek.

Periodicitás

Folytonos időben

Egy folytonos idejű jel periodikus akkor, és csak akkor, ha létezik Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T \in \mathbb{R}} periódusidő, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = x(t + T)} minden t-re.

Diszkrét időben

Egy diszkrét idejű jel periodikus akkor, és csak akkor, ha létezik Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L \in \mathbb{Z}} periódusidő, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k] = x[k + L]} minden k-ra.

Egyéb osztályozás

Továbbá általában determinisztikus, belépő típusú jelekkel foglalkozik a tárgy.

  • Determinisztikus: a rendszer válasza determinisztikus (megjósolható, nem véletlenszerű)
    ez nyilván nem így hangzik matematikusul, de nekünk jó lesz
  • Belépő: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = 0} minden Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t<0} esetén.

Említés szintjén előkerül sztochasztikus (nem determinisztikus), nem belépő, x-ben belépő, diszkrét értékű, etc. jelek. Ezekkel nem foglalkozik a tárgy, de kis gondolkodással megfejtheted, melyik micsoda.

Továbbá megkülönböztetünk páros és páratlan jeleket:

  • páros: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = x(-t)} (az y tengelyre szimmetrikus)
  • páratlan: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = -x(-t)} (az origóra szimmetrikus)

Állítás: Minden jel felírható egy páros és egy páratlan jel összegére.
Bizonyítás: Nem bizonyítjuk.

Jelek felírása

Diszkrét idejű jelek esetén

Speciális jelek

Egységimpulzus

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta[k]=\begin{cases} 1 & k=0 \\ 0 &\text{egyébként}\end{cases}}

Egységugrás

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon[k]=\begin{cases} 0 & k<0 \\ 1 & k\geq0 \end{cases}}

Állítás: Minden DI jel megadható egységimpulzusok szuperpozíciójaként.
Bizonyítás: Nem bizonyítjuk.

Példa 1

Az egységugrás felírható egységimpulzusok összegeként: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon[k]= \sum_{i=-\infty}^{k} \delta[i]} (szerk.: ezt ellenőrizd le!)

Példa 2

Vegyük a következő jelet:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]=\begin{cases} 0 & k<0 \\ 2 \cdot 0.1^k &\text{egyébként}\end{cases}} .

Ezt fel tudjuk írni egy sorban így:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]= \sum_{i=0}^{\infty} 2 \cdot 0.1 ^ i * \delta[k-i]} .

Itt ugye a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta[k-i]} csak a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k = i} esetben lesz 1, minden más esetben 0. Ezt kicsit tovább csavarva:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]= \sum_{i=0}^{\infty} x[i] \cdot \delta[k-i]} .

Mivel fentebb már kimondtuk, hogy ennek csak Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k = i} esetben van értelme. Így meg, az egyszerűsítések után egy triviális dolgot kapunk, miszerint:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x[k]=x[k]}

DE!

LTI rendszer válasza

Nevezetes válaszok
  • Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h[k]}
  • Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza
Konvolúció

Hogyan írjuk fel egy rendszer válaszát? Általánosan leginkább sehogy. De ha a rendszerünk lineáris, s idő invariáns, akkor:

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = W\left\{u[k]\right\}}
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = W\left\{\sum_{i=-\infty}^{\infty} x[i] \cdot \delta[k-i]\right\}}
  • mivel ez lineáris rendszer, így: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot W\left\{\delta[k-i]\right\}}
  • mivel ez idő invariáns rendszer, így: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \sum_{i=-\infty}^{\infty} x[i] \cdot h[k-i]}

Ennek pedig van gyakorlati haszna is. Ha szeretném kiszámolni, hogy egy terem hogyan lesz akusztikusan jó (mondjuk a színházban leghátul, visszhang nélkül hallatszik a színész hangja), akkor:

  • egységimpulzussal gerjesztem a termet (tapsolok),
  • lemérem leghátul a terem által adott impulzusválaszt,
  • számolok, hogy milyen választ adna a terem a színész hangjának a gerjesztésére.
Speciális esetek
Kauzális rendszer, belépő jel esetén

Kis gondolkodással belátható, hogy a belépő gerjesztés miatt 0 előtt nincs gerjesztés (a szorzat egyik tagja nulla), míg k után az impulzusválasz indexe lenne negatív, s így a kauzalitás miatt az impulzusválasz nulla (a szorzat másik tagja). Összefoglalva:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k] = \sum_{i=0}^{k} x[i] \cdot h[k-i]}

Folytonos idejű jelek esetén

Speciális jelek

Egységugrás

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t)=\begin{cases} 0 & t<0 \\ 1 & t>0 \end{cases}}

Megjegyzés: Az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(0)} -t nem definiáljuk, a tárgy keretében nem lesz rá szükség. Ha szeretnénk elképzelhetjük 0.5-nek, balról/jobbról 0/1-nek, etc.

Egységimpulzus

Írjuk fel az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon(t, T)} függvényt a következőképpen:

Ez 0-tól T-ig 1/T értékű négyzet.

Az egységimpulzust nevezzük annak, ha az -ben a T tart nullához.

Két lényeges tulajdonsága, amit megjegyzünk:

Az egységugrás és az egységimpulzus között itt is összefüggés van:

LTI rendszer válasza

Nevezetes válaszok
  • Impulzusválasz: a rendszer egységimpulzus gerjesztésre adott válasza. Jele:
  • Ugrásválasz: a rendszer egységugrásra gerjesztésre adott válasza
Konvolúció

Az a gondolatfolyam, ami a diszkrét esetben megtehető, itt is. Ezt én már nem teljesen értettem meg sosem, így csak a végeredmény:

A speciális esetek ugyanúgy felírhatók, mint a diszkrét esetben.

Jelek állapotváltozós leírása

Diszkrét idejű jelek esetén

Állapotváltozós leírás

Egy rendszer általánosságban leírható az alábbi két képlettel:

Ennek így elsőre semmi értelme, de:

  • ha így írunk fel rendszereket, akkor egyszerűen kiszámolható az impulzusválaszuk
  • ha így írunk fel rendszereket, akkor egyszerűen kiszámolható lesz adott gerjesztésre a válaszuk
  • és ilyet kérdeznek ZH-n, háziban.

Szóval érdemes begyakorolni, megérteni, etc.

Amennyiben a rendszerünk egy gerjesztéssel, egy válasszal, és két köztes állapotváltozóval rendelkezik, ez így néz ki:

Impulzusválasz állapotváltozós leírásból

Az így felírt rendszer impulzusválasza:

Mátrix egyszerű hatványozása

Ebből az kiszámolása okozhat nekünk gondot. Ennek a matematikai levezetését én sosem értettem meg, és nem is kell a ketteshez (remélem).

Általánosan egy mátrix hatványozása leírható (legalábbis, nekünk ez így jó lesz): Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{i=0}^{k} {\lambda_{i}}^k \cdot \underline{\underline{L_i}}}

Ahol az egyes -k az A mátrix Lagrange mátrixai, míg a -k az A mátrix sajátértékei.

A mátrix sajátértékeit kiszámolhatjuk, ha az alábbi egyenletet megoldjuk:

Azaz:

A Lagrange mátrix pedig általánosságban: Konkrétabban:

  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \underline{\underline{L_{2}}} = \frac{\underline{\underline{A}} - \lambda_1 \cdot \underline{\underline{E}}}{\lambda_2 - \lambda_1}}

Ön-ellenőrzéshez (vagy ha éppen késésben vagy), hasznos tulajdonsága a Lagrange mátrixnak, hogy: \sum \underline{\underline{L_i}} = \underline{\underline{E}}

Folytonos idejű jelek esetén

Impulzusválasz állapotváltozós leírásból

Az így felírt rendszer impulzusválasza:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h(t) = d \cdot \delta(t) + \epsilon(t) \cdot (\underline{c} \cdot e^{\underline{\underline{A}}\cdot t} \cdot \underline{B})}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^{\underline{\underline{A}}\cdot t} = \sum_{i=1}^{N} e^{\lambda_i \cdot t} \cdot \underline{\underline{L_{i}}}}