„Algoritmuselmélet - ZH, 2013.04.03.” változatai közötti eltérés

A VIK Wikiből
Arklur (vitalap | szerkesztései)
 
(24 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{Vissza|Algoritmuselmélet}}
==2013.04.03. ZH megoldásai==
==2013.04.03. ZH megoldásai==
===1. Feladat===
===1. Feladat (Van megoldás)===
TODO
Mi az a legkisebb ''r'' racionális szám, melyre teljesül, hogy <math>\sqrt{1} + \sqrt{2} + \sqrt{3} + ...+\sqrt{n} = O(n^{r}) ?</math>
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
*Először megpróbáljuk felülről becsülni:
**Felülről becsüljük a sorozatot, ha az elemeket rendre <math>\sqrt{n}</math>-nek tekintjük, vagyis:<br><br>
**<math>\sqrt{n} + \sqrt{n} + \sqrt{n} + ...+\sqrt{n}=n\cdot\sqrt{n}=n^{1.5}=O(n^{1.5}) \Rightarrow r=1.5</math><br><br>
*Most pedig megpróbáljuk alulról becsülni: <br><br>
**Alulról becsüljük a sorozatot: <br><br>
**<math> \frac{n}{2 } \cdot \sqrt{1}+\frac{n}{2} \cdot \sqrt{n} \leq \sqrt{1} + \sqrt{2} + \sqrt{3} \dots \sqrt{n} </math> <br><br>
**<math> \frac{n}{2 } \cdot \sqrt{1}+\frac{n}{2} \cdot \sqrt{n} = O(n^{1.5}) \Rightarrow r=1.5. </math> <br><br>
*A kettőt együttvéve látszik, hogy <math> r = 1.5 .</math>


TODO
}}
}}


===2. Feladat===
===2. Feladat (Van megoldás)===
TODO
Egy <math> A[i,j] </math> <math>n</math> x <math>n</math>-es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon <math> O(n^2) </math> lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb.
 
(Vagyis olyan <math>k, l</math>-t keresünk, amire <math> \sum_{i \leq k, j \leq l}A[i,j] </math> maximális.)
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
{{Rejtett
|mutatott=<big>''Megjegyzések a feladathoz''</big>
|szöveg=
 
*Ahogy az többször is segít, úgy most is, hogy felrajzolunk magunknak egy 3x3, vagy 4x4-es táblázatot, és nézegetjük, hogyan kéne dolgozni...
*A feladatban 1-1 lépésnek vettem:
**1 művelet (<math> +,- </math>) elvégzését ''(vagyis a <math> B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] </math> 3 lépés).''
**1 értéke beírása a cellába.
**1 összehasonlítás (és esetleges cserék).
 
}}
*Adott az <math> A </math> mátrix.
*Létrehozunk egy <math> B </math> mátrixot (szintén <math>n</math> x <math>n</math>-es).''(ez <math>\Rightarrow O(n^2)</math> lépés)''
*<math> B[1,1]:= A[1,1]</math>. ''(ez <math>\Rightarrow 1 </math> lépés)''
*<math> k=l=1 </math> és <math> aktmax=B[1,1] </math>.
*Először kitöltjük az 1. sort <math> \rightarrow  B[i,1]:=B[i-1,1]+A[i,1], i=2 \dots n  </math>. ''(ez <math>\Rightarrow 2(n-1)=O(n)</math> lépés)''
*Majd kitöltjük az 1. oszlopot <math> \rightarrow  B[1,i]:=B[1,i-1]+A[1,i], i=2 \dots n  </math>. ''(ez <math>\Rightarrow 2(n-1)=O(n)</math> lépés)''
*Minden további cellában pedig <math> B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] </math>. ''(ez <math>\Rightarrow 4(n-1)(n-1)=O(n^2)</math> lépés)''
*A keresett <math> k,l </math> párost pedig folyamat nyilván tartjuk: ha <math>  B[i,j] \geq aktmax \Rightarrow k=i, l=j, aktmax = B[i,j] </math>. ''(ez <math>\Rightarrow n^2-1=O(n^2)</math> lépés)''
*<math> 1+2O(n)+ 3O(n^2)=O(n^2)</math> lépésszámú algoritmusunk van, tehát jók vagyunk.
:::::::::::::::::[[File:Algel zh 2013tavasz A B matrix.PNG|400px]]
 
}}
}}


25. sor: 57. sor:


{{Rejtett
{{Rejtett
|mutatott=<big>''Megjegyzés a feladathoz''</big>
|mutatott=<big>''Megjegyzések a feladathoz''</big>
|szöveg=
|szöveg=


*Szokásos rendezést használó bináris keresőfa: <math>bal(x) < x < jobb(x)</math>
*Szokásos rendezést használó bináris keresőfa: <math>bal(x) < x < jobb(x)</math>
*Postorder:  
*Postorder:  
**Rekurzívan <math> bal(x) \rightarrow jobb(x) \rightarrow x </math>. Magyarul előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.
**Rekurzívan <math> bal(x) \rightarrow jobb(x) \rightarrow x </math>.''(Magyarul: előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.)''
**Egyik fontos tulajdonsága, hogy a '''gyökér''' az mindig a ''(figyelt)'' '''lista végén van'''.
**Egyik fontos tulajdonsága, hogy a '''gyökér''' az mindig a ''(figyelt)'' '''lista végén van'''.
}}
}}
*Első lépésnek írjuk fel egy táblázatba a számokat (az oszlopszámot tudjuk, ez esetben 11, sorok száma meg majd alakul...).
*Első lépésnek írjuk fel egy táblázatba a számokat (az oszlopszámot tudjuk, ez esetben 11, sorok száma meg majd alakul...).
*A továbbiakban az i. sorban jelöljük, hogy melyik elem a gyökér (=), és hogy melyek a nála kisebbek (<), avagy nagyobbak (>) ''(a képen keretezéssel jelzem, hogy melyik az éppen figyelt lista).'' Ez azért hasznos, mert a posztorder bejárás során, ezzel a technikával mindig olyan sorrendet kell kapjunk, hogy <math> < < < ... < < > > ... > > = </math>, vagyis nem állhat fel olyan helyzet, hogy <math> ... < > < ...</math> vagy <math> ... > < > ....</math>
*A továbbiakban az i. sorban jelöljük, hogy melyik elem a gyökér (=), és hogy melyek a nála kisebbek (<), avagy nagyobbak (>) ''(a képen keretezéssel jelzem, hogy melyik az éppen figyelt lista).'' Ez azért hasznos, mert a posztorder bejárás során, ezzel a technikával mindig olyan sorrendet kell kapjunk, hogy <math> < < < ... < < > > ... > > = </math>, vagyis nem állhat fel olyan helyzet, hogy <math> ... < > < ...=</math> vagy <math> ... > < > ...=</math>.
**Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. ''(Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)''
**Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. ''(Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)''
**A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
**A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
**A 3. sorban 14 lesz a gyökér, így e 14-est felrajzoljuk a 12-es jobb fiának.
**A 3. sorban 14 lesz a gyökér, így a 14-est felrajzoljuk a 12-es jobb fiának.
**A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
**A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
**Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen <math> < > < </math> sorrend van, ebből következik, hogy ilyen fa nem létezhet.
**Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen <math> < > < </math> sorrend van, ebből következik, hogy ilyen fa nem létezhet.


::::::::::[[File:post_tabla.GIF|400px]] [[File:graf.png|300px]]
::::::::::[[File:Algel zh 2013tavasz Post tabla.png|400px]] [[File:Algel zh 2013tavasz Graf.png|300px]]
}}
}}


===4. Feladat===
===4. Feladat (Van megoldás)===
TODO
Adjacencia-mátrixával adott <math>n</math> csúcsú, irányított gráfként ismerjük egy város úthálózatát. El szeretnék jutni <math>A</math> pontból <math>B</math> pontba, de sajnos minden csomóponthoz várnunk kell a nagy hóesés miatt, a várakozás hossza minden csomópontra ismert és független attól, hogy merre akarunk továbbmenni. Adjon algoritmust, ami <math>O(n^2)</math> lépésben eldönti, hogy merre menjünk, hogy a lehető legkevesebbet kelljen várni összességében. ''(A csomópontok közötti utak hosszának megtétele a várakozáshoz képest elhanyagolható időbe telik, tekintsük 0-nak. <math>A</math>-ban és <math>B</math>-ben nem kell várakozni.)''
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
*A "probléma", hogy a csúcsoknak van súlya (ill. az éleknek is van, de az 0), amivel nem igen tudunk mit kezdeni. De nem hiába volt BSZ1 (vagy BSZ2?), ahol megtanultuk, hogy könnyedén csinálhatunk a csúcssúlyból élsúlyt.
*Az adott pontot (X) lecseréljük 2 pontra (X1, X2). Ami eddig X-be ment, az menjen X1-be, és ami X-ből ment, az menjen X2-ből. ''(Vagyis X1-ből csak X2-be megy él, és X2-be csak az X1 megy.)''
*A 2 pontot összekötjük, a köztük menő élsúly pedig az X pont súlya lesz.
*Csináljuk hát ezt ezzel a gráffal:
**Az eredeti <math> n </math> csúcsú G gráfból csinálunk így egy F gráfot, melyben <math> 2n </math> csúcs lesz ''(és az élszám is n-nel nő, de ez most minket annyira nem izgat)''.
**Ebben az F gráfban kell megtalálni a legrövidebb utat egy "X2"-ből egy "Y1"-be.
**A Dijkstra-algoritmus <math> O(n^2) </math> lépésben keres legrövidebb utat, ebben az esetben <math> O((2n)^2)=4O(n^2)=O(n^2)</math>.
*Így a feladat ezzel meg is oldva.
::::::::::[[File:Algel zh 2013tavasz Csucs suly.png|300px|G gráf]][[File:Algel zh 2013tavasz El suly.png|400px|F gráf]]
 
Talán egyszerűbben: mivel 0 az utazási idő (élsúlyok) és bármerre megyünk egy csúcsból, ugyanannyit kell várni, ezért tekinthetjük a csúcsból kimenő élek súlyának a csúcsban töltött időt (A-ból 0, mivel itt nem várakozunk, B-ből nem megyünk tovább...). Így az eredeti gráfon (az élsúlyok beírása után) alkalmazható a Dijkstra algo.
--[[Szerkesztő:Deák Zsolt|Deák Zsolt]] ([[Szerkesztővita:Deák Zsolt|vita]]) 2015. április 8., 12:22 (UTC)
}}
}}


===5. Feladat===
===5. Feladat===
TODO
Adjacencia-mátrixával adott n csúcsú, élsúlyozott, irányítatlan gráfként ismerjük egy ország úthálózatát (a csomópontok a városok, az élek a közvetlen összeköttetések a városok között). Az élek súlya a városok közti távolságot adja meg. (Feltehetjük, hogy a távolságok egészek.)
Adjon egy O(n<sup>6</sup>) lépésszámú algoritmust, ami eldönti, hogy lehetséges-e úgy kiválasztani öt várost, hogy ezektől bármely más város legfeljebb 50 kilométerre van. ''(Ezekbe a városokba lenne érdemes hókoztrókat telepíteni.)''
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
 
*A megoldáshoz először Floyd algoritmussal páronként meghatározzuk az összes város távolságát, ez O(n<sup>3</sup>).<br>
TODO
*A város irányítatlan gráfként van megadva, de ezen könnyen segíthetünk úgy, hogy a jelenlegi élek helyett felveszünk két irányítottat, azonos súllyal. Ez O(n<sup>2</sup>).<br>
*Ezek után brute force módszerrel az összes csúcsötösre ellenőrizzük, hogy azok öten lefedik-e (legfeljebb 50 km-re vannak) az összes várost.<br>
**n<sup>5</sup> városötös van, mindegyikre le kell ellenőrizni, hogy jók-e. Az ellenőrzés során végignézzük, az összes csúcsra (n db.), hogy el lehet-e érni. Ez tehát O(n<sup>5</sup>*n)=O(n<sup>6</sup>).<br>
*Összességében ezért O(n<sup>6</sup>) lépésszámú az algoritmus.
}}
}}


===6. Feladat===
===6. Feladat (Van megoldás)===
TODO
Egy tömbben adott <math>n</math> darab 0-tól különböző egész szám (lehetnek negatívak is köztük) és adott egy <math>k</math> egész szám is. Adjon <math>O(n \cdot logn)</math> lépésszámú algoritmust, ami eldönti, hogy melyik az a <math>k</math> elem a tömbben, melyek szorzata maximális.
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
*Első lépésben csökkenő sorrendbe rendezzük az elemeket azok '''abszolút értéke''' szerint. <math> (O(n \cdot logn) </math> pl. összefésüléses rendezéssel. <math>)</math>
*Vesszük az első <math>k</math> szám szorzatát.
**Ha ez pozitív, akkor jók vagyunk, nincs más dolgunk. [[File:algel_zh_2013tavasz_6_1.PNG|250px]]
**Ha ez negatív, akkor kiválasztjuk a listából a legkisebb pozitív <math>(A^+)</math> és negatív <math>(A^-)</math> elemet, a maradék listából pedig a legnagyobb pozitív <math>(B^+)</math> és negatív <math>(B^-)</math> elemet. Most meg kell nézni, hogy mit éri meg lecserélni? A pozitívat negatívra, vagy a negatívat pozitívra?
***Ha <math> (A^- \cdot B^-) < (A^+ \cdot B^+) </math>, akkor a listából kivesszük <math> A^- </math>-t, és berakjuk <math> B^+ </math>-t
***Ha <math> (A^+ \cdot B^+) < (A^- \cdot B^-) </math>, akkor a listából kivesszük <math> A^+ </math>-t, és berakjuk <math> B^- </math>-t<br>[[File:algel_zh_2013tavasz_6_2.PNG|500px]]
***Ha nincs a listában pozitív szám, akkor kivesszük a <math>A^-</math>-t, és berakjuk <math>B^+</math>-t<br>[[File:algel_zh_2013tavasz_6_3.PNG|500px]]
***Ha nincs az egész listában pozitív szám, akkor a legnagyobb számot akkor kapjuk, ha a <math>k</math> darab utolsó elemet vesszük be.<br>[[File:algel_zh_2013tavasz_6_4.PNG|500px]]
 
}}
}}


===7. Feladat===
===7. Feladat (Van megoldás)===
TODO
Az <math>A[1 \dots 2013]</math> tömbben egy kupac adatstruktúrát tárolunk, minden tárolt elem különböző. Tudjuk, hogy ebben a kupacban a legnagyobb elem <math>    A[i]</math>. Határozza meg <math> i </math> összes lehetséges értékét!
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
*Kupac egyik jó tulajdonsága, hogy teljes bináris fa, így az elem számból kiszámolható, hogy milyen magas a fa.
**Tudjuk, hogy :<math> 2^{m-1} \leq n \leq 2^{m}-1</math>.
**Ebben az esetben <math> 2^{m-1} \leq 2013 \leq 2^{m}-1 \Rightarrow m = 11</math>.
*A legnagyobb elem vagy a legalsó szinten van, vagy ha az nem "telített", akkor az előtte lévő szinten olyan csúcsok is szóba jöhetnek, akiknek nincsen gyereke.
**Mivel tudjuk, hogy a fa magassága 11, ezért:
***A kupacban összesen 2047 elemnek van hely, tehát még 34 elem férne el. Ebből pedig az következik, hogy a 10. szinten 17 olyan csúcs van, aminek nincsen fia, így ők még játszhatnak a legnehezebb elem díjáért.
***A 11. szinten 1024 elem férne el, de tudjuk, hogy hiányzik 34, tehát a 11. szinten csak 990 elem van, amik a legnehezebbek lehetnek a fában.
*Ha a kupacot tömbbe írjuk, akkor azt fentről-lefele, balról-jobbra töltjük fel.
**Az előzőek alapján tudjuk, hogy a 11. szinten 990, a 10. szinten pedig 17 csúcs jöhet szóba, így összesen 1007 helyen lehet a legnehezebb elem. A tömbös elrendezés alapján ez azt jelenti, hogy az <math> i \geq (2013-1007+1) \Rightarrow i \geq 1007</math>.
{{Rejtett
|mutatott=<big>''Avagy...''</big>
|szöveg=
*Avagy bebizonyítható, hogy a legnagyobb elem az az utolsó <math> \left \lceil \frac{n}{2} \right \rceil </math> helyen állhat.
 
}}
 
}}
}}


===8. Feladat===
===8. Feladat (Van megoldás)===
TODO
'''(a)''' Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?
 
'''(b)''' Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?
 
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
{{Rejtett
|mutatott=<big>''Megjegyzések a feladathoz''</big>
|szöveg=
 
*Avagy mitől is piros-fekete egy piros-fekete fa?
#Minden nem levél csúcsnak 2 fia van.
#Elemeket belső csúcsban tárolunk.
#teljesül a keresőfa tulajdonság.
#A fa minden csúcsa piros, vagy fekete.
#A gyökér fekete.
#A levelek feketék.
#Minden piros csúcs mindkét gyereke fekete.
#Minden ''v'' csúcsra igaz, hogy az összes ''v''-ből levélbe vezető úton ugyanannyi fekete csúcs van (~fekete magasság).
}}
'''a)''' Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?
 
*Igaz. ''(Nem tudom, mennyi magyarázatot, vagy milyen indoklást várnak ide, de a piros-fekete tulajdonságai közül talán csak a fekete magasság szorul magyarázatra (...), a többi elég triviális.)''
**Ha a részgráfra nem állna fenn a fekete magasság kritériuma, akkor pláne nem fog a teljes gráfra teljesülni, hiszen hiába jó a fekete magasság a pontig, ha a pont tönkre teszi azt :/.
 
 
'''b)''' Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?
*Nem. A gyökérnek feketének kell lennie.
}}
}}
[[Kategória:Infoalap]]

A lap jelenlegi, 2015. április 8., 13:22-kori változata


2013.04.03. ZH megoldásai

1. Feladat (Van megoldás)

Mi az a legkisebb r racionális szám, melyre teljesül, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt{1} + \sqrt{2} + \sqrt{3} + ...+\sqrt{n} = O(n^{r}) ?}

Megoldás
  • Először megpróbáljuk felülről becsülni:
    • Felülről becsüljük a sorozatot, ha az elemeket rendre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt{n}} -nek tekintjük, vagyis:

    • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt{n} + \sqrt{n} + \sqrt{n} + ...+\sqrt{n}=n\cdot\sqrt{n}=n^{1.5}=O(n^{1.5}) \Rightarrow r=1.5}

  • Most pedig megpróbáljuk alulról becsülni:

    • Alulról becsüljük a sorozatot:

    • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{n}{2 } \cdot \sqrt{1}+\frac{n}{2} \cdot \sqrt{n} \leq \sqrt{1} + \sqrt{2} + \sqrt{3} \dots \sqrt{n} }

    • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{n}{2 } \cdot \sqrt{1}+\frac{n}{2} \cdot \sqrt{n} = O(n^{1.5}) \Rightarrow r=1.5. }

  • A kettőt együttvéve látszik, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle r = 1.5 .}

2. Feladat (Van megoldás)

Egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[i,j] } Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} -es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2) } lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb.

(Vagyis olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k, l} -t keresünk, amire Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{i \leq k, j \leq l}A[i,j] } maximális.)

Megoldás
Megjegyzések a feladathoz
  • Ahogy az többször is segít, úgy most is, hogy felrajzolunk magunknak egy 3x3, vagy 4x4-es táblázatot, és nézegetjük, hogyan kéne dolgozni...
  • A feladatban 1-1 lépésnek vettem:
    • 1 művelet (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle +,- } ) elvégzését (vagyis a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] } 3 lépés).
    • 1 értéke beírása a cellába.
    • 1 összehasonlítás (és esetleges cserék).
  • Adott az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A } mátrix.
  • Létrehozunk egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B } mátrixot (szintén Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} x Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} -es).(ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow O(n^2)} lépés)
  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[1,1]:= A[1,1]} . (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 1 } lépés)
  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=l=1 } és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle aktmax=B[1,1] } .
  • Először kitöltjük az 1. sort Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rightarrow B[i,1]:=B[i-1,1]+A[i,1], i=2 \dots n } . (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 2(n-1)=O(n)} lépés)
  • Majd kitöltjük az 1. oszlopot Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rightarrow B[1,i]:=B[1,i-1]+A[1,i], i=2 \dots n } . (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 2(n-1)=O(n)} lépés)
  • Minden további cellában pedig Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j]=B[i-1,j]+B[i,j-1]+A[i,j]-B[i-1,j-1] } . (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow 4(n-1)(n-1)=O(n^2)} lépés)
  • A keresett Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k,l } párost pedig folyamat nyilván tartjuk: ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B[i,j] \geq aktmax \Rightarrow k=i, l=j, aktmax = B[i,j] } . (ez Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Rightarrow n^2-1=O(n^2)} lépés)
  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1+2O(n)+ 3O(n^2)=O(n^2)} lépésszámú algoritmusunk van, tehát jók vagyunk.
  • 3. Feladat (Van megoldás)

    Kaphatjuk-e az 1,7,3,6,11,15,22,17,14,12,9 számsorozatot úgy, hogy egy (a szokásos rendezést használó) bináris keresőfában tárolt elemeket posztorder sorrendben kiolvasunk?

    Megoldás
    Megjegyzések a feladathoz
    • Szokásos rendezést használó bináris keresőfa: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle bal(x) < x < jobb(x)}
    • Postorder:
      • Rekurzívan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle bal(x) \rightarrow jobb(x) \rightarrow x } .(Magyarul: előbb meglátogatja a gyökérnél kisebbeket, utána a nagyobbakat, és ezután jön csak a gyökér.)
      • Egyik fontos tulajdonsága, hogy a gyökér az mindig a (figyelt) lista végén van.
  • Első lépésnek írjuk fel egy táblázatba a számokat (az oszlopszámot tudjuk, ez esetben 11, sorok száma meg majd alakul...).
  • A továbbiakban az i. sorban jelöljük, hogy melyik elem a gyökér (=), és hogy melyek a nála kisebbek (<), avagy nagyobbak (>) (a képen keretezéssel jelzem, hogy melyik az éppen figyelt lista). Ez azért hasznos, mert a posztorder bejárás során, ezzel a technikával mindig olyan sorrendet kell kapjunk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle < < < ... < < > > ... > > = } , vagyis nem állhat fel olyan helyzet, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ... < > < ...=} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ... > < > ...=} .
    • Az 1. sorban a 9 lesz a gyökér. Felrajzoljuk a 9-t gyökérnek. (Bal oldalt lesz a hiba, de gyakorlásképp nézzük inkább a jobb oldalt.)
    • A 2. sorban a 12 lesz a gyökér, így a 12-est felrajzoljuk a 9-es jobb fiának. Nála csak a 11 a kisebb (a vizsgált listában), így a 11-t berajzoljuk a 12 bal fiának.
    • A 3. sorban 14 lesz a gyökér, így a 14-est felrajzoljuk a 12-es jobb fiának.
    • A 4. sorban a 17 lesz a gyökér, így ez a 14-es jobb fia lesz. A 15 és 22 pedig értelemszerűen a bal, és jobb fia lesz 17-nek.
    • Az 5. sorban a gyökér a 6 lesz, így azt berajzoljuk a 9-es bal fiának. És itt látszik is, hogy hiba van, hiszen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle < > < } sorrend van, ebből következik, hogy ilyen fa nem létezhet.
  • 4. Feladat (Van megoldás)

    Adjacencia-mátrixával adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} csúcsú, irányított gráfként ismerjük egy város úthálózatát. El szeretnék jutni Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} pontból Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} pontba, de sajnos minden csomóponthoz várnunk kell a nagy hóesés miatt, a várakozás hossza minden csomópontra ismert és független attól, hogy merre akarunk továbbmenni. Adjon algoritmust, ami Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2)} lépésben eldönti, hogy merre menjünk, hogy a lehető legkevesebbet kelljen várni összességében. (A csomópontok közötti utak hosszának megtétele a várakozáshoz képest elhanyagolható időbe telik, tekintsük 0-nak. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} -ban és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} -ben nem kell várakozni.)

    Megoldás
    • A "probléma", hogy a csúcsoknak van súlya (ill. az éleknek is van, de az 0), amivel nem igen tudunk mit kezdeni. De nem hiába volt BSZ1 (vagy BSZ2?), ahol megtanultuk, hogy könnyedén csinálhatunk a csúcssúlyból élsúlyt.
    • Az adott pontot (X) lecseréljük 2 pontra (X1, X2). Ami eddig X-be ment, az menjen X1-be, és ami X-ből ment, az menjen X2-ből. (Vagyis X1-ből csak X2-be megy él, és X2-be csak az X1 megy.)
    • A 2 pontot összekötjük, a köztük menő élsúly pedig az X pont súlya lesz.
    • Csináljuk hát ezt ezzel a gráffal:
      • Az eredeti Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n } csúcsú G gráfból csinálunk így egy F gráfot, melyben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2n } csúcs lesz (és az élszám is n-nel nő, de ez most minket annyira nem izgat).
      • Ebben az F gráfban kell megtalálni a legrövidebb utat egy "X2"-ből egy "Y1"-be.
      • A Dijkstra-algoritmus Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n^2) } lépésben keres legrövidebb utat, ebben az esetben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O((2n)^2)=4O(n^2)=O(n^2)} .
    • Így a feladat ezzel meg is oldva.
    G gráfF gráf

    Talán egyszerűbben: mivel 0 az utazási idő (élsúlyok) és bármerre megyünk egy csúcsból, ugyanannyit kell várni, ezért tekinthetjük a csúcsból kimenő élek súlyának a csúcsban töltött időt (A-ból 0, mivel itt nem várakozunk, B-ből nem megyünk tovább...). Így az eredeti gráfon (az élsúlyok beírása után) alkalmazható a Dijkstra algo.

    --Deák Zsolt (vita) 2015. április 8., 12:22 (UTC)

    5. Feladat

    Adjacencia-mátrixával adott n csúcsú, élsúlyozott, irányítatlan gráfként ismerjük egy ország úthálózatát (a csomópontok a városok, az élek a közvetlen összeköttetések a városok között). Az élek súlya a városok közti távolságot adja meg. (Feltehetjük, hogy a távolságok egészek.) Adjon egy O(n6) lépésszámú algoritmust, ami eldönti, hogy lehetséges-e úgy kiválasztani öt várost, hogy ezektől bármely más város legfeljebb 50 kilométerre van. (Ezekbe a városokba lenne érdemes hókoztrókat telepíteni.)

    Megoldás
    • A megoldáshoz először Floyd algoritmussal páronként meghatározzuk az összes város távolságát, ez O(n3).
    • A város irányítatlan gráfként van megadva, de ezen könnyen segíthetünk úgy, hogy a jelenlegi élek helyett felveszünk két irányítottat, azonos súllyal. Ez O(n2).
    • Ezek után brute force módszerrel az összes csúcsötösre ellenőrizzük, hogy azok öten lefedik-e (legfeljebb 50 km-re vannak) az összes várost.
      • n5 városötös van, mindegyikre le kell ellenőrizni, hogy jók-e. Az ellenőrzés során végignézzük, az összes csúcsra (n db.), hogy el lehet-e érni. Ez tehát O(n5*n)=O(n6).
    • Összességében ezért O(n6) lépésszámú az algoritmus.

    6. Feladat (Van megoldás)

    Egy tömbben adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} darab 0-tól különböző egész szám (lehetnek negatívak is köztük) és adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} egész szám is. Adjon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n \cdot logn)} lépésszámú algoritmust, ami eldönti, hogy melyik az a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} elem a tömbben, melyek szorzata maximális.

    Megoldás
    • Első lépésben csökkenő sorrendbe rendezzük az elemeket azok abszolút értéke szerint. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (O(n \cdot logn) } pl. összefésüléses rendezéssel. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle )}
    • Vesszük az első Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} szám szorzatát.
      • Ha ez pozitív, akkor jók vagyunk, nincs más dolgunk.
      • Ha ez negatív, akkor kiválasztjuk a listából a legkisebb pozitív Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A^+)} és negatív Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A^-)} elemet, a maradék listából pedig a legnagyobb pozitív Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (B^+)} és negatív Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (B^-)} elemet. Most meg kell nézni, hogy mit éri meg lecserélni? A pozitívat negatívra, vagy a negatívat pozitívra?
        • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A^- \cdot B^-) < (A^+ \cdot B^+) } , akkor a listából kivesszük Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A^- } -t, és berakjuk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B^+ } -t
        • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A^+ \cdot B^+) < (A^- \cdot B^-) } , akkor a listából kivesszük Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A^+ } -t, és berakjuk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B^- } -t
        • Ha nincs a listában pozitív szám, akkor kivesszük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A^-} -t, és berakjuk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B^+} -t
        • Ha nincs az egész listában pozitív szám, akkor a legnagyobb számot akkor kapjuk, ha a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} darab utolsó elemet vesszük be.

    7. Feladat (Van megoldás)

    Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[1 \dots 2013]} tömbben egy kupac adatstruktúrát tárolunk, minden tárolt elem különböző. Tudjuk, hogy ebben a kupacban a legnagyobb elem Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[i]} . Határozza meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i } összes lehetséges értékét!

    Megoldás
    • Kupac egyik jó tulajdonsága, hogy teljes bináris fa, így az elem számból kiszámolható, hogy milyen magas a fa.
      • Tudjuk, hogy :Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{m-1} \leq n \leq 2^{m}-1} .
      • Ebben az esetben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{m-1} \leq 2013 \leq 2^{m}-1 \Rightarrow m = 11} .
    • A legnagyobb elem vagy a legalsó szinten van, vagy ha az nem "telített", akkor az előtte lévő szinten olyan csúcsok is szóba jöhetnek, akiknek nincsen gyereke.
      • Mivel tudjuk, hogy a fa magassága 11, ezért:
        • A kupacban összesen 2047 elemnek van hely, tehát még 34 elem férne el. Ebből pedig az következik, hogy a 10. szinten 17 olyan csúcs van, aminek nincsen fia, így ők még játszhatnak a legnehezebb elem díjáért.
        • A 11. szinten 1024 elem férne el, de tudjuk, hogy hiányzik 34, tehát a 11. szinten csak 990 elem van, amik a legnehezebbek lehetnek a fában.
    • Ha a kupacot tömbbe írjuk, akkor azt fentről-lefele, balról-jobbra töltjük fel.
      • Az előzőek alapján tudjuk, hogy a 11. szinten 990, a 10. szinten pedig 17 csúcs jöhet szóba, így összesen 1007 helyen lehet a legnehezebb elem. A tömbös elrendezés alapján ez azt jelenti, hogy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \geq (2013-1007+1) \Rightarrow i \geq 1007} .
    Avagy...
    • Avagy bebizonyítható, hogy a legnagyobb elem az az utolsó Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left \lceil \frac{n}{2} \right \rceil } helyen állhat.

    8. Feladat (Van megoldás)

    (a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?

    (b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?

    Megoldás
    Megjegyzések a feladathoz
    • Avagy mitől is piros-fekete egy piros-fekete fa?
    1. Minden nem levél csúcsnak 2 fia van.
    2. Elemeket belső csúcsban tárolunk.
    3. teljesül a keresőfa tulajdonság.
    4. A fa minden csúcsa piros, vagy fekete.
    5. A gyökér fekete.
    6. A levelek feketék.
    7. Minden piros csúcs mindkét gyereke fekete.
    8. Minden v csúcsra igaz, hogy az összes v-ből levélbe vezető úton ugyanannyi fekete csúcs van (~fekete magasság).

    a) Igaz-e, hogy egy piros-fekete fa tetszőleges belső fekete csúcshoz tartozó részfa (az a részfa, aminek ez a fekete csúcs a gyökere) is egy piros-fekete fa?

    • Igaz. (Nem tudom, mennyi magyarázatot, vagy milyen indoklást várnak ide, de a piros-fekete tulajdonságai közül talán csak a fekete magasság szorul magyarázatra (...), a többi elég triviális.)
      • Ha a részgráfra nem állna fenn a fekete magasság kritériuma, akkor pláne nem fog a teljes gráfra teljesülni, hiszen hiába jó a fekete magasság a pontig, ha a pont tönkre teszi azt :/.


    b) Igaz-e ugyanez egy tetszőleges belső piros csúcshoz tartozó részfára?

    • Nem. A gyökérnek feketének kell lennie.