„Matematika A1 - Vizsga: 2007.06.07” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
Szikszayl (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
 
(3 közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{noautonum}}
__NOTOC__
{{vissza|Matematika A1a - Analízis}}
{{vissza|Matematika A1a - Analízis}}


===1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.===
===1. Feladat===
 
Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.


{{Rejtett
{{Rejtett
14. sor: 16. sor:
}}
}}


===2. Oldja meg a <math>z^2 = \overline{z}^ 2</math> egyenletet.===
===2. Feladat===
 
Oldja meg a <math>z^2 = \overline{z}^ 2</math> egyenletet.


{{Rejtett
{{Rejtett
38. sor: 42. sor:
}}
}}


===3. Határozza meg az alábbi sorozatok határértékét:===
===3. Feladat===


<math>a, \; a_n = (\frac{n^2-1}{n^2+2})^{3n^2}</math>
Határozza meg az alábbi sorozatok határértékét:


<math>b, \; \sqrt[n]{\frac{2n^2-1}{n^2+2}}</math>
<math>a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}</math>
 
<math>b, \; b_n=\sqrt[n]{\frac{2n^2-1}{n^2+2}}</math>


{{Rejtett
{{Rejtett
48. sor: 54. sor:
|szöveg=
|szöveg=


====(a)====
Először alkalmazzuk az [[OverLord|OverLord]] féle algebrai trükköt, és a számlálót átalakítjuk:


<math>(\frac{n^2+2-2-1}{n^2+2})^{3n^2} = (\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2})^{3n^2} = (1-\frac{3}{n^2+2})^{3n^2}.</math>
'''a, Feladat:'''
 
 
<math> a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}=
\left(\frac{n^2+2-2-1}{n^2+2}\right)^{3n^2}=
\left(\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2}\right)^{3n^2}=
\left(1-\frac{3}{n^2+2}\right)^{3n^2}</math>
 
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:
<math>(1-\frac{9}{3n^2+6})^{3n^2} </math>
<math>\left(1-\frac{9}{3n^2+6}\right)^{3n^2} </math>


Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!
Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!


<math>\frac{(1-\frac{9}{3n^2+6})^{3n^2+6}}{(1-\frac{9}{3n^2+6})^6} </math>
<math>\frac{\left(1-\frac{9}{3n^2+6}\right)^{3n^2+6}}{\left(1-\frac{9}{3n^2+6}\right)^6} </math>
 
Látható, hogy a nevező 1-hez tart, így a határérték:
Látható, hogy a nevező 1-hez tart, így a határérték:
<math>\underline{\underline{e^{-9} = \frac{1}{e^9}}}</math>
<math>\underline{\underline{e^{-9} = \frac{1}{e^9}}}</math>


-- [[ViszkeiGyorgy|Gyurci]] - 2008.01.14.


====(b) ====
'''b, Feladat:'''
Először vizsgáljuk meg az n-edik gyökjelen belüli törtet:
Egyszerűsítsük a törtet <math>n^2</math>-el:
<math> \frac{2n^2-1}{n^2+2} = \frac{2-\frac{1}{n^2}}{1+\frac{2}{n^2}} \rightarrow  \underline{2} </math>
Azaz a gyökjelen belüli rész 2-höz tart végtelennél. Így pedig már egy nevezetes határértéket kapunk:
<math> \sqrt[n]{2} \rightarrow \underline{\underline{1}} </math>


-- [[OverLord|OverLord]] - 2008.01.14.


Troll vagyok, de ez a megoldás hibás. '''Nem szabad gyökjel alatt vizsgálni, ha a "gyök" művelet n-től függ!''' Tekintsük a nevezetes <math> (1+\frac{a}{n})^n = e^a </math> határértéket: Ha belül vizsgálom, a tört kinullázódik, 1 hatványa 1. Ott a hiba.
A gyökjel alatt végezzünk algebrai átalakítást:


Rendőrelvvel (alias csendőrelv, közrefogási elv) oldjuk meg. Azt tudjuk, hogy az n. gyök szig. mon. növekvő függvény, tehát kisebb szám n. gyöke kisebb mint egy nagyobb számé. A gyökjel alatt végezzünk algebrai átalakítást, átrendezhető:
<math> b_n=\sqrt[n]{2-\frac{5}{n^2+2}} </math>


<math> \sqrt[n]{2-\frac{5}{n^2+2}} </math>
Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:


Látjuk, hogy mindegyik elem kisebb lesz, mint <math> \sqrt[n]{2} </math>, ez remek felső becslés, mert 1-hez tart. Az alsó becslés valamivel nehezebb. Az első elemnél <math> \sqrt[n]{2-\frac{5}{3}} </math>, ezzel a konstans értékkel alulról becsülhető, mármint a gyökön belüli rész, és így ezzel a függvénnyel alulról becsülhető a sorozatunk. Ennek is 1 a határértéke, sikeresen közrefogtuk. ^^
Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.


Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.


<math>2-\frac{5}{3}=\frac{1}{3} < 2-\frac{5}{n^2+2} < 2</math>


-- [[mp9k1|MP]] - 2012.01.09.
Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.


<math>\sqrt[n]{\frac{1}{3}} <\sqrt[n]{ 2-\frac{5}{n^2+2} }<\sqrt[n]{ 2}</math>
Tudjuk, hogy:
<math>\lim_{n\to\infty} {\sqrt[n]{\frac{1}{3}}}=1</math>
<math>\lim_{n\to\infty} {\sqrt[n]{ 2}} =1</math>
Így a rendőrelv miatt:
<math>\lim_{n\to\infty} {b_n}=1</math>


}}
}}


===4. Legyen <math> f(x)= xarctan\frac{1}{x^2}, x \neq 0</math> és <math>0, x=0</math>.===
===4. Feladat===
 
Legyen <math> f(x)= xarctan\frac{1}{x^2}, x \neq 0</math> és <math>0, x=0</math>.


a, Hol folytonos és hol deriválható <math>f(x)</math>?
a, Hol folytonos és hol deriválható <math>f(x)</math>?
103. sor: 126. sor:
}}
}}


===5. Igaz vagy hamis? Válaszát indokolja!===
===5. Feladat===
 
Igaz vagy hamis? Válaszát indokolja!


a, Ha <math>a,b \neq 0</math> és <math>ab = ac</math>, akkor <math>b = c</math>
a, Ha <math>a,b \neq 0</math> és <math>ab = ac</math>, akkor <math>b = c</math>
123. sor: 148. sor:
}}
}}


===6. Számítsa ki a következő határozatlan integrálokat:===
===6. Feladat===
 
Számítsa ki a következő határozatlan integrálokat:


<math>a, \; \int \frac{1}{x(x^2+1)}dx </math>
<math>a, \; \int \frac{1}{x(x^2+1)}dx </math>
133. sor: 160. sor:
|szöveg=
|szöveg=


====(a) <math>\int \frac{1}{x(x^2+1)}dx </math>====
 
'''a, Feladat:'''
 
 
Parciális törtekre bontjuk az integrandust:
Parciális törtekre bontjuk az integrandust:
<math> \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}</math>
<math> \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}</math>


140. sor: 171. sor:


<math> \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}</math>
<math> \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}</math>


<math> 1 = (A+B)x^2 + Cx + A</math>
<math> 1 = (A+B)x^2 + Cx + A</math>
Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik:


<math> A=1</math>
<math> A=1</math>
148. sor: 183. sor:


<math> C=0</math>
<math> C=0</math>
Tehát:


<math> \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}</math>
<math> \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}</math>
Így már könnyű integrálni:
Így már könnyű integrálni:
<math> \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C </math>
<math> \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C </math>


-- [[OverLord|OverLord]] - 2008.01.14.


====(b) <math> \int{ \frac{\sqrt{x}}{x\sqrt{x}+3}}\;dx </math>====
'''b, Feladat:'''
 
 
<math>  \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} </math>
<math>  \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} </math>
Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)
Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)


<math> \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx =  \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}</math>
<math> \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx =  \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}</math>
-- [[OverLord|OverLord]] - 2008.01.14.


}}
}}


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2014. március 13., 18:49-kori változata


1. Feladat

Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

2. Feladat

Oldja meg a egyenletet.

Megoldás

Írjuk ki z-t és z konjugáltat algebrai alakban:

Zárójelek felbontása után:

Kihúzzuk a közös tagokat, osztunk 2i-vel:

Ez akkor lehetséges, ha és , az összes ilyen alakú szám megoldás.

3. Feladat

Határozza meg az alábbi sorozatok határértékét:

Megoldás

a, Feladat:


A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:

Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!

Látható, hogy a nevező 1-hez tart, így a határérték:


b, Feladat:


A gyökjel alatt végezzünk algebrai átalakítást:

Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:

Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.

Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.

Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.


Tudjuk, hogy:


Így a rendőrelv miatt:

4. Feladat

Legyen és .

a, Hol folytonos és hol deriválható ?

b, Hol folytonos ?

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

5. Feladat

Igaz vagy hamis? Válaszát indokolja!

a, Ha és , akkor

b, Ha akkor

c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n

d, Ha f szigorúan monoton nő -en, akkor

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

6. Feladat

Számítsa ki a következő határozatlan integrálokat:

Megoldás

a, Feladat:


Parciális törtekre bontjuk az integrandust:



Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik:


Tehát:


Így már könnyű integrálni:


b, Feladat:


Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)