Számítógépes látórendszerek - Ellenőrző kérdések: Matematikai Alapok, Projektív Geometria

A VIK Wikiből

Adja meg a lineáris egyenletrendszer általános alakját! Mi a megoldhatóság feltétele? Mutassa be a legkisebb négyzetek (LS) módszerét!

Lineáris egyenletrendszer: , ahol

az együtthatómátrix, ezt vizsgálhatjuk.

Az egyenletrendszer megoldása az oszlopvektorok lineáris kombinációja:

Megoldhatóság

A lineáris egyenletrendszer megoldható, ha előáll az mátrix oszlopvektorainak lineáris kombinációjaként, azaz benne van oszlopterében. A lineáris egyenletrendszer minden vektorra megoldható, ha .

LS módszer

Általában a paraméterek számánál több mérési eredmény áll rendelkezésünkre, de a mérési pontatlanságok és zajok miatt az egyenletrendszer nagyon kis valószínűséggel oldható meg. A megoldás legjobb közelítése az LS (Least Squares) módszerrel kapható meg.

Mivel az oszloptér és transzponált nulltér egymás merőleges kiegészítő alterei, bármely vektor előáll

formában. Ekkor



a megoldás legjobb közelítése (optimális megoldás, LS becslő).

Mi az SVD felbontás és mire használható? Mit értünk szinguláris érték és vektor alatt?

Az SVD (szinguláris érték) felbontás bázistranszformáció, arra használjuk, hogy a mátrixainkat olyan ortonormált bázisban írhassuk fel, ahol diagonálisak. A diagonális mátrixokat azért szeretjük, mert irányfüggő erősítéseket jellemeznek (legnagyobb, legkisebb -> rendszerek stabilitása).

,

ahol .

U és V bázistranszformációs mátrixok, ortogonálisak (ezért ortonormált bázisokra visznek).

a szinguláris értékekből () képzett diagonális mátrix. Konvencionálisan a szinguláris értékek csökkenő sorrendben szerepelnek.

[TODO: érték? vektor?]

Adja meg a lehetséges geometriai transzformációk típusait, és a mátrixaik általános alakját! Milyen tulajdonságokat őriznek meg az egyes típusok?

Projektív transzformáció

Affin transzformáció

Megőrzi az ideális pontokat.

Hasonlósági transzformáció

  • Nincs irányfüggő skálázás
  • Nincs nyírás

Euklideszi transzformáció

Nincs skálázás

Transzformációk és megőrzött tulajdonságok

Geometriák: Euklideszi Hasonlósági Affin Projektív
Transzformációk
Eltolás I I I I
Forgatás I I I I
Uniform skálázás X I I I
Nem uniform skálázás X X I I
Nyírás X X I I
Perspektív vetítés X X X I
Invariáns jellemzők
Hossz I X X X
Szög I I X X
Hosszak aránya I I X X
Párhuzamosság I I I X
Egybeesés I I I I
Keresztarány I I I I

Mik a homogén koordináták és mi a használatuk előnye? Mi az az ideális pont?

Pontok leírása a projektív síkon

Euklideszi koordináták → Projektív:

Tulajdonságok:

Az egy síkbeli ponthoz tartozó számhármasok egy egyenest alkotnak -ban. A homogén koordináták skála invariánsak.

Ideális pont

Homogén koordináták → Euklideszi:

Az ideális pont alakú. Vegyük észre az előző képlet nullosztóját.

Az ideális pont egyfajta irányított végtelen, melynek minden koordinátája véges.

Adja meg a projektív térből a projektív síkra történő vetítés egyenletét! Mi az eltűnő pont?

Vetítés a projektív térből a projektív síkra:

Egyenlet

Eltűnő pont

Párhuzamos -beli egyenesek metszéspontja, az adott irányban lévő ideális pont.

A -beli ideális pont képe -ben nem biztos, hogy ideális pont lesz!

  • Csak, ha (X,Y,Z) merőleges -ra
  • Ha az egyenesek párhuzamosak a képsíkkal!