Számítógépes látórendszerek - Ellenőrző kérdések: Mérések

A VIK Wikiből

Hogyan definiálhatjuk egy objektum pozícióját?
Ismertesse a pozíciómérés lehetőségeit.
Mutassa meg, hogy lehet a pozíció értékét meghatározni bináris és maszkolt szürkeárnyalatos képeken.

Egy 2D-s képet ábrázolhatunk egy derékszögű koordinátarendszerben, ahol az egyes pixelekhez hozzárendelhetünk egy (x,y) egész koordinátapárt. A koordinátarendszer középpontja tetszőlegesen, feladattól függően megválasztható, de általában a bal felső sarokban lévő pixelhez rendeljük hozzá a (0,0)-t. Egy objektum pozíciója az objektum egy jellegzetes koordinátapárjával jellemezhető. Ez a koordinátapár lehet:

geometriai középpont – az objektumot befoglaló téglalap/kör középpontja

tömegközéppont

Tömegközéppont meghatározása

A kép mérete: pixel ( az oszlopok száma, a soroké)

  • az koordinátájú oszlopban a vizsgált objektum pixeleinek száma
  • az koordinátájú sorban a vizsgált objektum pixeleinek száma

Bináris képekre

Szürkeárnyalatos képekre

: intenzitásfüggvény

Geometriai középpont meghatározása

Meghatározás a befoglaló téglalap alapján

 : az objektum legszélső pixeleinek koordinátái

és

a téglalap középpontja, azaz a geometriai középpont.

Meghatározás a befoglaló kör alapján

  • egyértelmű, ha 3 ponton érinti a kört
  • kör átlójáig egyértelmű, ha 2 ponton érinti a kört.

Hogyan definiálhatjuk egy objektum orientációját?
Sorolja fel az orientációmérés lehetőségeit, illetve röviden ismertesse ezek alapelvét.

Objektum orientációján egy objektum egy olyan 1D-s jellemzését értjük, mely irány-, szöginformációkat szolgáltat az adott objektumról. Objektum orientációja megadható a

  • befoglaló téglalap arányaival és méreteivel
  • legnagyobb távolsággal az objektumon belül
  • középponttól vett legnagyobb távolsággal
  • rá illeszthető legkisebb nyomatékú tengellyel

Mit jelent az Euler szám?
Mire használható?
Adja meg a mellékelt ábra Euler számát.

Az Euler-szám egyike a topológiai tulajdonságoknak, melyek egy kép geometriai leírását segítik elő. Fontos része az ilyen tulajdonságoknak, hogy rubber-sheet jellegű transzormációkra invariáns. Az ilyen jellegű tulajdonságok jól használhatók formák keresésére, objektumok felismerésére, adatbázisbeli keresésre. Euler-szám fontos szerepet játszik például orvosi képfeldolgozásban, fertőzött sejtek felismerésében.

Euler-szám = (egybefüggő régiók száma) – (lyukak száma)

Mit jelent a lánckód? Mire használható?
Mi a különbség a 4-szomszádos és 8-szomszédos lánckód között? Mik az előnyei és a hátrányai az így ábrázolt objektumoknak?
Hogyan tudunk segítségével kerület- és hossz-számítást végezni? Milyen problémák adódnak?

A lánckód egy veszteségmentes tömörítési algoritmus bináris képekhez. Lánckód segítségével alakfelismerést, sarokdetektálást végezhetünk. (A kódból egyértelműen látszik, hol vannak pl.: dudorok, bemélyedések.) Az objektum egy szélső pixelétől elindulva szomszédos, határ menti pixelekre lépkedünk. Attól függően, hogy milyen irányba lépünk tovább a pixelhez egy számot rendelünk hozzá. Ez a számsorozat alkotja a lánckódot.

  • 4-szomszédos: csak azok a pixelek számítanak szomszédosnak, amiknek van közös élük
  • 8-szomszédos: közös él, vagy közös csúcs
  • 4-szomszédos lánckód maximális hiba: 41% (45°-os átlós egyenes)
  • 8-szomszédos lánckód maximális hiba: 7.9% (~18-27°-os átlós egyenes)

Kerület = kódhossz

Hossz számításnál kerül elő az a probléma, hogy négyzetes pixelek esetén egy átlós lépés valóságos hossza egység. 4-szomszédos lánckód 2 egység hosszúnak, míg a 8-szomszédos esetben 1 egység hosszúnak veszi alapból. Ha szükséges akkor ezt kompenzálni kell.

Forrás

Ismertessen szubpixeles eljárásokat. Hogyan tudunk pozíciót, kerületet, ill. területet mérni segítségükkel?

Interpoláció alapú eljárás, mely segítségével pixel alatti pontossággal illeszthetünk görbét egy objektumra. Megfelelő algoritmussal akár 0.1% pontosság is elérhető.

Eljárás szürkeárnyalatos képekhez

  1. Szürkeárnyalatos képeket először is binarizáljuk.
  2. Visszatérve az eredeti képhez (fekete-fehér kép alapján) az átmeneteknél lévő pixelekhez egy súlytényezőt (értéke lehet tört, megadja az interpoláció finomságát) rendelünk attól függően, hogy mennyire világos/sötét az adott pixel.
  3. Megfelelő ablakozással (pl.: 2x2) végigpásztázzuk a határokat és súlyozásoknak megfelelően felbontjuk (kijelöljük a határpontot/határpontokat) a két szomszédos fekete-fehér pixel középpontját összekötő szakaszt.

Pozíciószámítás során a 3. lépésben meghatározott határpontok koordinátáit használjuk fel a képletekben. Kerület, területnél hasonlóan.

Ismertesse az egyenesekre vonatkozó Hough-transzformáció működését.

Hough-transzformáció

A Hough-transzformáció segítségével a képen általában az Értelmezés sikertelen (formai hiba): {\displaystyle f (x, y ; a_1 , a_2 ,…, a_n)=0 } ahol Értelmezés sikertelen (formai hiba): {\displaystyle a_1, a_2,…, a_n } paraméterekkel explicit alakban megadható görbéket keressük. A Hough-transzformáció alkalmazása célravezető, ha ismert alakú (és méretű) objektumokat keresünk a képen. Akkor is célszerű, ha az egyenesek részben takartak vagy zajosak.

Áttérés a Hough-térbe

Az input (kép)tér egy pontjának az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle r=x_i·\cosφ+y_i·\sinφ } szinuszos görbe felel meg a Hough-térben. Az egy egyenesbe eső pontokhoz tartozó szinuszos görbék egy pontban metszik egymást.

Egyenesek meghatározása

  • Egy (él)pont a képtérben megfelel egy szinuszos görbének a Hough-térben.
  • Két pontnak két görbe felel meg.
  • Két (vagy több) ilyen görbe metszéspontja által reprezentált egyenesre ekkor kettő (vagy több) szavazat esett.
  • Az így kapott egyenes valamennyi rá szavazó ponton átmegy a képtérben.
  • A Hough-tér küszöbölésével megkapjuk a képtér egyeneseit.