Számítógépes látórendszerek - Ellenőrző kérdések: Kameramodellek, kalibráció

A VIK Wikiből


Ismertesse a pinhole kameramodellt! (Rajz, egyenletek, paraméterek, mátrixok)

[1] [2] (A Kameramodell, kalibráció diasoron van még némileg több is.)

Mátrix

Vetítés egyenlete:
A vetítés mátrixa: :
A vetítés mátrixa felbontható belső és külső paraméterekre.

  • Külső: - A kamera helyzetétől függenek a világ koordinátarendszerben
  • Belső:: - A kamera paraméterei (kameramátrix)
    • Pixelsűrűség (pix/mm) (k,l)
    • Fókusztáv (f)
    • Skew (Θ)
    • Principális pont (px py)

Mutassa be a 3D markeres kalibráció elvét és lépéseit!

Elve

Van egy 3D objektumunk, azon előre ismert markerek. A markerek képét akarjuk meghatározni.

Lépései

  1. Markerek megkeresése
    1. Sarokdetektálással
  2. P meghatározása (projekciós mátrix)
  3. A, R, t meghatározása (külső-belső paraméterek)
  4. Becslések finomítása

Ismertesse a sakktáblás kalibráció elvét és lépéseit!

Elve: gyakran nincsen 3D kalibrációs objektum,ekkor 2D objektumot használunk.
Ismert számú sakktáblaszerűen elhelyezkedő markerünk van. Az egymástól mért távolságuk is ismert.

Lépései:

  • Sarokdetektálás
    • Mivel nincs 3D információnk a markerekről P mátrix nem határozható meg egyértelműen.
  • Homográfia (H mátrix meghatározása DLT- vel)
  • Kameramátrix meghatározása
  • Torzítások figyelembevétele

Hogyan lehet a kamerák torzítását figyelembe venni a kalibráció során?

Csak a radiális torzítást vesszük figyelembe, mert általában ez a domináns.

(A diasorban leírt képlet magyarázata itt található.)

Hogyan néz ki a sztereó elrendezés? Mi az esszenciális és a fundamentális mátrix?

Sztereó elrendezés

Alapeleme

Sztereó elrendezés

Elrendezés jellemzően

Vízszintes vagy függőleges eltoltás

  • Vízszintes: Pontpárok csak vízszintesen vannak eltolva (csak egy irányba kell keresni a pontpárokat)

Rektifikáció

Képek elforgatása, hogy csak vízszintesek legyenek az egyes pontpárok.

Mátrixok

Fundamentális egyenes:Azok az egyenesek, amelyek mentén az elmozdulás történik! Nem biztos, hogy a képen is egyenesek (torzítás, stb). Epipoláris megkötés kalibrált kamerák esetén:

Ismertesse a 7 és 8 pontos kalibrációs algoritmusok elvét és lépéseit!

7 pontos

Elve

Fundamentális mátrix szinguláris mátrix kell, hogy legyen. Plusz egy megkötés → 7 pont elég

Lépések

  1. DLT módszerrel általános megoldás 2 dimenziós → megoldáshalmaz
  2. Megoldás alakja:
  3. feltételből a paraméterek számolása

8 pontos

Elve

F szinguláris kell, hogy legyen: 8 pontos módszerrel nem lesz az!

Megoldás

  1. Kiszámoljuk F SVD felbontását
  2. A legkisebb szinguláris értéket nullára állítjuk
  3. A kapott F' lesz az F-hez legközelebb lévő szinguláris mátrix

Korrigálás

A 8 pontos kalibráció rossz eredményt ad zaj esetén! Érzékeny a skálára és az origó megválasztására!
Pontok normalizálása:

  • A pontokat úgy toljuk el, hogy az átlaguk pont az origóban legyen!
  • A skálafaktort úgy válasszuk meg, hogy a pontok RMS távolsága az origótól pont legyen.

SOHA NE HASZNÁLJUK A 8 PONTOS ALGORITMUST NORMALIZÁLATLAN PONTOKKAL!!!

Ismertesse a RANSAC algoritmust (előnyök, hátrányok) és a felhasználási lehetőségeit!

Felhasználási lehetőségek:
Kalibráció, 2D/3D alakfelismerés

Lépései:
kiindulás: sok pontpárunk van

  1. Véletlen 7/8 pontpár halmazok kiválasztása
  2. 7/8 pontos kalibráció elvégzése minden halmazra
  3. Megnézni, hogy hány pontpár illeszkedik kis hibával az adott fundamentális mátrixra
  4. A legjobb kiválasztása

Előnyök:

  1. Egyszerű
  2. 50%-nál nagyobb arányú outlier esetén is működik
  3. Zajos esetben is jól használható, ekkora mértékű zaj esetén az LS becslés teljesen csődöt mond

Hátrányok:

  1. Nem garantált, hogy megtalálja a jó megoldást!
  2. Ha szeretnénk biztosra menni, akkor nagyon sok véletlen jelöltet kell állítani: nagyon lassú tud lenni!