Záróvizsga kvíz - Algoritmusok
Tekintsük azt a teljes páros gráfot, melynek és a két osztálya. Hány maximális (azaz tovább nem bővíthető) párosítás van ebben a gráfban? (Két párosítás különböző, ha nem pontosan ugyanazokból az élekből áll.) (2022 jun)
- !
Egy kezdetben üres bináris keresőfába szúrtunk be elemeket (törlés nem volt). Az alábbiak közül melyik beszúrási sorrend eredményezi az ábrán látható fát? (2022 jun)
A tömböt rendezzük öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jan)
- 12
- 7
- 4
- 8
Egy kezdetben üres bináris keresőfába beszúrtuk az egész számokat valamilyen sorrendben (a sorrend nem ismert). Mi igaz biztosan az alábbiak közül? (2022 jan)
- Az 1 levélben van.
- A fának 7 szintje van.
- A legutoljára beszúrt érték levélben van.
- A középső érték, azaz a 64, a gyökérben van.
Adott egy egész számokat tartalmazó tömb, melyben nem szerepel 0. (2023 jun)
Az tömb alapján egy és egy tömböt töltünk ki a következőképpen: - ha akkor és . - ha akkor és
A további értékeket így számoljuk: - ha akkor és - ha akkor és
Melyik állítás igaz az alábbiak közül a kiszámolt és értékek jelentésére?
- megadja a legnagyobb összeget, amit valamelyik, legfeljebb egy negatív számot tartalmazó résztömbből ( kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
- megadja a legnagyobb összeget, amit valamelyik résztömbből kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
- megadja az tömbben szereplö összes negatív szám összegét
- megadja az tömbben szereplö összes szám összegét
Egy irányítatlan nyolc csúcsú gráfon DFS-t (mélységi bejárást) futtatunk úgy, hogy ha döntési helyzetben vagyunk, akkor az ábécé szerinti sorrend szerint haladunk. A DFS fába az alábbi élek kerülnek be ebben a sorrendben: . Mi igaz a csúcs fokszámára az alábbiak közül? (2022 jan)
- fokszáma lehet 1 vagy 2, és más nem lehet
- fokszáma lehet 1, 2, 3 vagy 4, és más nem lehet
- fokszáma lehet 1, 2 vagy 3, és más nem lehet
- fokszáma lehet 1, 2, 3, 4 vagy 5, és más nem lehet
Az 1, 8, 10,12, 20, 27, 30 rendezett tömbben bináris kereséssel keressük a 30-at. Hány összehasonlítás után találjuk meg? (2022 jun)
- 2
- 1
- 7
- 3
Egy csupa különböző egész számot tartalmazó bináris keresőfában egy keresés során az alábbi értékeket látjuk (x értéke nem ismert): . Az alábbiak közül mi igaz x értékére? (2022 jan)
- x lehet 1 is és 9 is
- x lehet 6 is és 9 is
- x lehet 1 is és 6 is
- x lehet 2 is és 12 is
Radix rendezéssel rendezünk 5 hosszú karaktersorozatokat, ahol a karakterek mindegyik pozícióban a 4-elemű ábécéből kerülnek ki. Mi igaz ekkor a radix rendezés során használt ládarendezésekre? (2022 jan)
- 1 ládarendezést használunk ládával.
- 5 ládarendezést használunk, mindegyik esetben 4 ládával.
- 4 ládarendezést használunk, mindegyik esetben 5 ládával.
- 1 ládarendezést használunk 20 ládával.
Eldöntési feladatok (2023 jun)
Az eldöntési feladatban egy irányítatlan gráfról azt szeretnénk eldönteni, hogy van-e -ben pontosan 4 élü kör. Az eldöntési feladatban egy irányítatlan gráfról és egy pozitív egész számról azt szeretnénk eldönteni, hogy van-e -ben pontosan élü kör. Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy ?
- és
- és
- de
- de
Egy -es táblázat mezőin akarunk eljutni a bal felső cellából az utolsó sorba (itt mindegy, hogy a soron belül melyik oszlopba érkezünk). (2022 jun)
A szabályok a következők:
- Az első oszlop első mezőjéről kell indulnunk és a végén az utolsó sor tetszőleges mezőjére kell érkeznünk.
- Egy lépésben vagy egy cellát mehetünk lefele (és maradunk ugyanabban az oszlopban) vagy egy cellát megyünk jobbra (és maradunk ugyanabban a sorban) vagy átlósan lépünk egyet lefele jobbra (azaz egy sort lefele és egy oszlopnyit jobbra).
Jelölje esetén) azt, hogy az -edik sor -edik oszlopában levő mezőbe hányféleképpen juthatok el a bal felső cellából. Inicializáljuk a kezdeti értékeket így: mivel az első sor minden cellájába egyféleképpen juthatunk, ezért minden esetén és hasonlóan, mivel az első oszlop minden cellájába is egy út vezet, ezért minden esetén. Melyik rekurziós képlet a helyes a többi érték meghatározására?
Az előző feladat folytatása:
A teljesen kitöltött táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?
- adja meg ezt.
- adja meg ezt.
- adja meg ezt.
- adja meg ezt
- adja meg ezt.
Radix rendezéssel rendezzük az alábbi sorozatot: (a karakterek mindegyik pozícióban a 3-elemű ábécéből kerülnek ki). (2023 jun)
Melyik állítás igaz a rendezés folyamatára?
- soha nem előzi meg az szót.
- Van olyan fázis, amikor megelőzi az szót.
- és sorrendje pontosan kétszer változik.
- Van olyan fázis, amikor megelőzi az szót.
Egy bináris keresőfa preorder bejárása a csúcsokat sorrendben látogatja meg. (2023 jun)
Melyik igaz az alábbi állítások közül a keresőfára?
- A 7 a 12 egyik részfájában van.
- A 8 a gyökérben van.
- A 10 a 2 egyik részfájában van.
- A 2 egy levélbe n van.
Tekintsük azt a feladatot, ahol egy csúcsú irányított gráfról azt szeretnénk eldönteni, hogy van-e 100 olyan csúcsa, hogy a gráfból ezeket elhagyva a maradék gráf csupa izolált pontból áll. (2022 jun)
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy ?
- A probléma -ben van, de nincs -ben.
- A probléma -teljes és nincs -ben.
- A probléma -ben van és -teljes.
- A probléma -ben és -ben is benne van.
Pozitív egész számokat szeretnénk tárolni valami adatszerkezet segítségével úgy, hogy tárolt elem esetén tetszőleges egész számról lépésben meg tudjuk mondani, hogy igaz-e rá, hogy a tárolt számok között van, de sem , sem nincsen. (2022 jun)
Melyik adatszerkezettel valósítható ez meg?
- 2-3 fa
- rendezett lista
- nyílt címzésú hash
- (nem feltétlenül kiegyensúlyozott) bináris keresőfa
Adott egy csúcsú teljes gráf, a csúcsok számozottak, az 1, 2,…, n számozású csúcsok pirosra vannak színezve, a többi csúcs színtelen. Hány olyan különböző Hamilton-út van a gráfban, amelyben az első n csúcs piros? (2022 jan)
Kruskal algoritmusát futtatjuk az alábbi gráfon. (2023 jun)
Melyik állítás igaz az alábbiak közül?
- Ha akkor az élet biztosan nem választja be az algoritmus a minimális feszítőfába.
- Az élet biztosan beválasztja az algoritmus a minimális feszítőfába, bármi is értéke.
- Az élet biztosan nem választja be az algoritmus a minimális feszítőfába, bármi is értéke.
- Az algoritmus biztosan beválaszt legalább egy 3 súlyú élet a minimális feszítőfába.
Az algoritmusról tudjuk, hogy lépésszáma a bemenet hosszának, -nek a függvényében . (2022 jun)
Melyik nem igaz az alábbiak közül?
- Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
- Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .
- Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
- Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .
Az csúcsú irányítatlan gráfra igaz, hogy bárhogyan is sorolunk fel csupa különböző -beli csúcsokat, ahol a és párok közül legalább az egyik benne van élhalmazában. Melyik állítás igaz az alábbiak közül? (2023 jun)
- komplementerében nincsen kör.
- math>-ben van kör.
- math>-ben nincsen méretű független ponthalmaz.
- komplementerében nincsen -as klikk.
A hátizsák feladatra tanult dinamikus programozást használó algoritmust futtatjuk -es hátizsák kapacitással. A táblázat -es sora az értékekkel így néz ki: (2022 jan)
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
7 | 0 | 0 | 7 | 7 | 8 | 12 | 12 | 12 | 12 | 20 | 20 |
Mi igaz a következő, -as sor értékeire az alábbiak közül, ha a 8. tárgy súlya , értéke pedig ? ( jelentése: az első tárgyból hátizsák kapacitás mellett elérhető maximális érték.)
Tekintsük azt az eldöntési feladatot, ahol egy irányított gráfról azt szeretnénk eldönteni, hogy van-e két olyan és csúcsa, hogy -ből van irányított út -be, de -ből nincsen irányított út -be (2022 jan)
Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy ?
- A probléma -ben és -ben is benne van.
- A probléma -ben van, de nincs -ben.
- A probléma -teljes és nincs -ben.
- A probléma -ben van és -teljes.
Egy ország térképe egy élsúlyozott, irányítatlan csúcsú gráf szomszédossági mátrixával adott. A csomópontok a városok, az élek a városok között vezető közvetlen utak, egy él súlya a megfelelő útszakasz hosszát adja meg kilométerben. (2023 jun)
A városok közül néhányban van csak posta. Egy adott érték esetén azt szeretnénk eldönteni, hogy igaz-e, hogy bármelyik településről van kilométeren belül elérhető, postával rendelkező város (az eléréshez csak az úthálózatot használhatjuk). Az alábbi lehetőségek közül melyikkel lehet ezt eldönteni lépésben?
- Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd szélességi bejárást (BFS) futtatunk az új csúcsból a legrövidebb utak megkeresésére.
- Minden csúcsból futtatunk egy szélességi bejárást (BFS) a legrövidebb utak megkeresésésére.
- Minden csúcsból lefuttatjuk Dijktsra algoritmusát a legrövidebb utak megkeresésére.
- Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd futtatjuk Dijkstra algoritmusát az új csúcsból a legrövidebb utak megkeresésére.
Az tömböt rendezzük a szokásos (módosítás nélkül futtatott) öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jun)
- 0
- 64
- 32
Tekintsük az alábbi három függvényt (itt a függvény mindig kettes alapú logaritmust jelöl): (2022 jan)
Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?
- és
- és
- és
- és
A megadottak közül melyik egy topologikus sorrendje az ábrán látható gráfnak? (2022 jun)
A egyszerű, irányítatlan gráf élei súlyozottak. Tegyük fel, hogy az élek súlyai különbözőek és hogy van legalább három éle a gráfnak. (2022 jun)
Tekintsük a következő állításokat: A: minden minimális feszítőfája tartalmazza a legkisebb súlyú élt. B: minden minimális feszítőfája tartalmazza a második legkisebb súlyú élt. C: egyik minimális feszítőfája sem tartalmazza a legnagyobb súlyú élt. Melyik a helyes az alábbi lehetőségek közül?
- Csak az állítás igaz, a másik kettő nem
- Az , a és a állítás is igaz.
- Csak az és a állítás igaz, a nem.
- Csak az és a állítás igaz, a nem.
Tekintsük az alábbi két függvényt (itt a log függvény kettes alapú logaritmust jelöl): (2023 jun)
Az alábbiak közül melyik állítás igaz?
- , mert mindkét függvényre igaz, hogy
- , mert és
- , de az előző két indoklás egyike sem helyes
Legyen az az eldöntési probléma, ahol egy irányítatlan páros gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben élű párosítás és legyen az a kérdés, ahol egy irányítatlan gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben pontból álló klikk (azaz teljes gráf). (2022 jan)
Mi igaz az alábbiak közül, ha feltételezzük, hogy ?
- Karp-redukálható -ra, de nem Karp-redukálható -re.
- nem Karp-redukálható -ra, de Karp-redukálható -re.
- Karp-redukálható -ra és is Karp-redukálható -re.
- sem Karp-redukálható -ra és sem Karp-redukálható -re.
darab különböző csokiból hányféleképpen tudunk kiválasztani darabot úgy, hogy a három kedvenc csokink a kiválasztottak között legyen? (2023 jun)
Legyen a Értelmezés sikertelen (formai hiba): {\displaystyle 2SZÍN} eldöntési probléma, azaz ahol egy egyszerü, irányítatlan gráfról azt szeretnénk eldönteni, hogy ki lehet-e színezni a csúcsait két színnel úgy, hogy azonos színú csúcsok közőtt ne menjen él. Az eldöntési problémában pedig azt kell eldöntenünk darab pozitív egész számról, hogy van-e ezeknek a számoknak egy olyan részhalmaza, hogy a részhalmazban levő számok összege megegyezik a részhalmazba be nem vett számok összegével. (2022 jun)
Mi igaz az alábbiak közül, ha feltételezzük, hogy ?
- nem Karp-redukálható -ra, de Karp-redukálható -re.
- Karp-redukálható -ra és is Karp-redukálható -re.
- sem Karp-redukálható -ra és sem Karp-redukálható -re.
- Karp-redukálható -ra, de nem Karp-redukálható -re.
Az eldöntési problémáról azt tudjuk, hogy -ben van, az eldöntési problémáról pedig azt, hogy -teljes. (2023 jun)
Mi igaz az alábbiak közül, ha feltételezzük, hogy ?
- Minden olyan eldöntési probléma, ami Karp-redukálható -ra, az Karp-redukálható -re is.
- biztosan Karp-redukálható -re.
- Ha Karp-redukálható -ra, akkor nincsen -ben.
- Ha Karp-redukálható -re, akkor az probléma -teljes.