Záróvizsga kvíz - Algoritmusok

A VIK Wikiből
A lap korábbi változatát látod, amilyen Varga Márk Vince (vitalap | szerkesztései) 2023. december 11., 21:51-kor történt szerkesztése után volt. (kérdések hozzáadása)
ZVAlgo
Statisztika
Átlagteljesítmény
-
Eddigi kérdések
0
Kapott pontok
0
Alapbeállított pontozás
(-)
-
Beállítások
Minden kérdés látszik
-
Véletlenszerű sorrend
-
-


Tekintsük az alábbi két függvényt (itt a log függvény kettes alapú logaritmust jelöl): (2023 jun)

Az alábbiak közül melyik állítás igaz?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. , mert mindkét függvényre igaz, hogy
  2. , mert és
  3. , de az előző két indoklás egyike sem helyes

Egy bináris keresőfa preorder bejárása a csúcsokat sorrendben látogatja meg. (2023 jun)

Melyik igaz az alábbi állítások közül a keresőfára?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A 7 a 12 egyik részfájában van.
  2. A 8 a gyökérben van.
  3. A 10 a 2 egyik részfájában van.
  4. A 2 egy levélben van.

darab különböző csokiból hányféleképpen tudunk kiválasztani darabot úgy, hogy a három kedvenc csokink a kiválasztottak között legyen? (2023 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Pozitív egész számokat szeretnénk tárolni valami adatszerkezet segítségével úgy, hogy tárolt elem esetén tetszőleges egész számról lépésben meg tudjuk mondani, hogy igaz-e rá, hogy a tárolt számok között van, de sem , sem nincsen. (2022 jun)

Melyik adatszerkezettel valósítható ez meg?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 2-3 fa
  2. rendezett lista
  3. nyílt címzésú hash
  4. (nem feltétlenül kiegyensúlyozott) bináris keresőfa

Az 1, 8, 10,12, 20, 27, 30 rendezett tömbben bináris kereséssel keressük a 30-at. Hány összehasonlítás után találjuk meg? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 2
  2. 1
  3. 7
  4. 3

Egy kezdetben üres bináris keresőfába szúrtunk be elemeket (törlés nem volt). Az alábbiak közül melyik beszúrási sorrend eredményezi az ábrán látható fát? (2022 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.


Tekintsük azt a feladatot, ahol egy csúcsú irányított gráfról azt szeretnénk eldönteni, hogy van-e 100 olyan csúcsa, hogy a gráfból ezeket elhagyva a maradék gráf csupa izolált pontból áll. (2022 jun)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. A probléma -ben van, de nincs -ben.
  2. A probléma -teljes és nincs -ben.
  3. A probléma -ben van és -teljes.
  4. A probléma -ben és -ben is benne van.


A megadottak közül melyik egy topologikus sorrendje az ábrán látható gráfnak? (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.


Egy -es táblázat mezőin akarunk eljutni a bal felső cellából az utolsó sorba (itt mindegy, hogy a soron belül melyik oszlopba érkezünk). (2022 jun)

A szabályok a következők:

  1. Az első oszlop első mezőjéről kell indulnunk és a végén az utolsó sor tetszőleges mezőjére kell érkeznünk.
  2. Egy lépésben vagy egy cellát mehetünk lefele (és maradunk ugyanabban az oszlopban) vagy egy cellát megyünk jobbra (és maradunk ugyanabban a sorban) vagy átlósan lépünk egyet lefele jobbra (azaz egy sort lefele és egy oszlopnyit jobbra).

Jelölje esetén) azt, hogy az -edik sor -edik oszlopában levő mezőbe hányféleképpen juthatok el a bal felső cellából. Inicializáljuk a kezdeti értékeket így: mivel az első sor minden cellájába egyféleképpen juthatunk, ezért minden esetén és hasonlóan, mivel az első oszlop minden cellájába is egy út vezet, ezért minden esetén. Melyik rekurziós képlet a helyes a többi érték meghatározására?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

Az előző feladat folytatása:

A teljesen kitöltött táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

  1. adja meg ezt.
  2. adja meg ezt.
  3. adja meg ezt.
  4. adja meg ezt
  5. adja meg ezt.

A egyszerű, irányítatlan gráf élei súlyozottak. Tegyük fel, hogy az élek súlyai különbözőek és hogy van legalább három éle a gráfnak. (2022 jun)

Tekintsük a következő állításokat: A: minden minimális feszítőfája tartalmazza a legkisebb súlyú élt. B: minden minimális feszítőfája tartalmazza a második legkisebb súlyú élt. C: egyik minimális feszítőfája sem tartalmazza a legnagyobb súlyú élt. Melyik a helyes az alábbi lehetőségek közül?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Csak az állítás igaz, a másik kettő nem
  2. Az , a és a állítás is igaz.
  3. Csak az és a állítás igaz, a nem.
  4. Csak az és a állítás igaz, a nem.

Legyen a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2SZÍN} eldöntési probléma, azaz ahol egy egyszerü, irányítatlan gráfról azt szeretnénk eldönteni, hogy ki lehet-e színezni a csúcsait két színnel úgy, hogy azonos színú csúcsok közőtt ne menjen él. Az eldöntési problémában pedig azt kell eldöntenünk darab pozitív egész számról, hogy van-e ezeknek a számoknak egy olyan részhalmaza, hogy a részhalmazban levő számok összege megegyezik a részhalmazba be nem vett számok összegével. (2022 jun)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. nem Karp-redukálható -ra, de Karp-redukálható -re.
  2. Karp-redukálható -ra és is Karp-redukálható -re.
  3. sem Karp-redukálható -ra és sem Karp-redukálható -re.
  4. Karp-redukálható -ra, de nem Karp-redukálható -re.

Tekintsük azt a teljes páros gráfot, melynek és a két osztálya. Hány maximális (azaz tovább nem bővíthető) párosítás van ebben a gráfban? (Két párosítás különböző, ha nem pontosan ugyanazokból az élekből áll.) (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1.  !

Az tömböt rendezzük a szokásos (módosítás nélkül futtatott) öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 0
  2. 64
  3. 32

Az algoritmusról tudjuk, hogy lépésszáma a bemenet hosszának, -nek a függvényében . (2022 jun)

Melyik nem igaz az alábbiak közül?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
  2. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .
  3. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
  4. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .

Egy csupa különböző egész számot tartalmazó bináris keresőfában egy keresés során az alábbi értékeket látjuk (x értéke nem ismert): . Az alábbiak közül mi igaz x értékére? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. x lehet 1 is és 9 is
  2. x lehet 6 is és 9 is
  3. x lehet 1 is és 6 is
  4. x lehet 2 is és 12 is

Egy kezdetben üres bináris keresőfába beszúrtuk az egész számokat valamilyen sorrendben (a sorrend nem ismert). Mi igaz biztosan az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Az 1 levélben van.
  2. A fának 7 szintje van.
  3. A legutoljára beszúrt érték levélben van.
  4. A középső érték, azaz a 64, a gyökérben van.

Egy irányítatlan nyolc csúcsú gráfon DFS-t (mélységi bejárást) futtatunk úgy, hogy ha döntési helyzetben vagyunk, akkor az ábécé szerinti sorrend szerint haladunk. A DFS fába az alábbi élek kerülnek be ebben a sorrendben: . Mi igaz a csúcs fokszámára az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. fokszáma lehet 1 vagy 2, és más nem lehet
  2. fokszáma lehet 1, 2, 3 vagy 4, és más nem lehet
  3. fokszáma lehet 1, 2 vagy 3, és más nem lehet
  4. fokszáma lehet 1, 2, 3, 4 vagy 5, és más nem lehet

Adott egy csúcsú teljes gráf, a csúcsok számozottak, az 1, 2,…, n számozású csúcsok pirosra vannak színezve, a többi csúcs színtelen. Hány olyan különböző Hamilton-út van a gráfban, amelyben az első n csúcs piros? (2022 jan)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

A tömböt rendezzük öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jan)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 12
  2. 7
  3. 4
  4. 8

Radix rendezéssel rendezünk 5 hosszú karaktersorozatokat, ahol a karakterek mindegyik pozícióban a 4-elemű ábécéből kerülnek ki. Mi igaz ekkor a radix rendezés során használt ládarendezésekre? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. 1 ládarendezést használunk ládával.
  2. 5 ládarendezést használunk, mindegyik esetben 4 ládával.
  3. 4 ládarendezést használunk, mindegyik esetben 5 ládával.
  4. 1 ládarendezést használunk 20 ládával.

Tekintsük az alábbi három függvényt (itt a függvény mindig kettes alapú logaritmust jelöl): (2022 jan)

Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. és
  2. és
  3. és
  4. és

Tekintsük azt az eldöntési feladatot, ahol egy irányított gráfról azt szeretnénk eldönteni, hogy van-e két olyan és csúcsa, hogy -ből van irányított út -be, de -ből nincsen irányított út -be (2022 jan)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A probléma -ben és -ben is benne van.
  2. A probléma -ben van, de nincs -ben.
  3. A probléma -teljes és nincs -ben.
  4. A probléma -ben van és -teljes.

Legyen az az eldöntési probléma, ahol egy irányítatlan páros gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben élű párosítás és legyen az a kérdés, ahol egy irányítatlan gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben pontból álló klikk (azaz teljes gráf). (2022 jan)

Mi igaz az alábbiak közül, ha feltételezzük, hogy ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Karp-redukálható -ra, de nem Karp-redukálható -re.
  2. nem Karp-redukálható -ra, de Karp-redukálható -re.
  3. Karp-redukálható -ra és is Karp-redukálható -re.
  4. sem Karp-redukálható -ra és sem Karp-redukálható -re.

A hátizsák feladatra tanult dinamikus programozást használó algoritmust futtatjuk -es hátizsák kapacitással. A táblázat -es sora az értékekkel így néz ki: (2022 jan)

X 0 1 2 3 4 5 6 7 8 9 10
7 0 0 7 7 8 12 12 12 12 20 20

Mi igaz a következő, -as sor értékeire az alábbiak közül, ha a 8. tárgy súlya , értéke pedig ? ( jelentése: az első tárgyból hátizsák kapacitás mellett elérhető maximális érték.)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.