Laboratórium 1 - 5. Mérés: Időtartománybeli jelanalízis

A VIK Wikiből
A lap korábbi változatát látod, amilyen Vepperi Virág (vitalap | szerkesztései) 2021. október 12., 14:31-kor történt szerkesztése után volt. (→‎Házihoz segítség)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)


A mérésről

A méréssel nem volt sok gond, oda kell figyelni, hogy mikor kell a generátort 50ohm-osnak, illetve, mikor kell nagyimpedanciás állapotba állítani. Ezen kívül nem sok mindenre kellett odafigyelni, a mérési leírások alapján meg lehet csinálni a mérést. Vigyázni kell arra, hogy az aktív szűrőt jól kössük be, illetve hogy a táp +20V-os állásba legyen, nálunk külön kérték, hogy mielőtt ráadjuk a feszkót hívjuk oda a mérésvezetőt hogy ellenőrizze le. Előző csoportnál aki nem hívta oda, attól könnyes búcsút vettek, nálunk senkit nem raktak ki. A mérést Balázs Gergely és Kohári Zalán vezette.

Házihoz segítség

  • Kidolgozott házi feladat
    Hiba a megoldásban
    Az elméleti képlet helyesen szerepel worst case összegzésre, de utána a tényleges képlet hibás, mivel nem tagonként képez abszolút értéket, hanem az összegből, amivel előjelessé válik az összegzés. A képlet helyesen:
    Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta \phi = |c_a \Delta a|+|c_b \Delta b|}
    Amiből behelyettesítve a következő adódik:
    Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta \phi = |\frac{1}{b \sqrt{1-\frac{a^2}{b^2}}} \Delta a |+|-\frac{a}{b^2 \sqrt{1-\frac{a^2}{b^2}}} \Delta b|}
  • Ellenőrző kérdések kidolgozva
  • Ellenőrző kérdések kidolgozva - Egy másik megoldás
  • Ellenőrző kérdések kidolgozása - Egy harmadik megoldás

Beugró kérdések kidolgozása

Ezt a részt még aktualizálni kell, meg valami pofásabb formára kéne hozni. Az első kérdéseknél megadtam az alapot, a többit is így kéne megformázni - Régi wikioldal

1.1. Alulátersztő szűrő időtartománybeli vizsgálata

  • Aluláteresztő szűrő átmeneti függvénye : Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V(s) = \frac{1} {s}W(s) = \frac{1}{s(sRC+1)} = \frac{1}{s} + \frac{-1}{s - \frac{-1}{RC}} } akkor: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t) = \varepsilon (t)\left( {1 - e^{ - \frac{t} {{RC}}} } \right) } . Ezt látjuk az oszcilloszkópon is, ha a bemenetre négyszögjelet adunk, és a felfutó élet kinagyítjuk (minél nagyobb az RC időállandó, annál nagyobb a felfutási idő). Tkp. alacsony frekvenciás feszültség hatására szép lassan töltődik fel a kondenzátor, nagyfrekvenciás, gyors változásokra pedig érzéketlen (rövidzárként modellezhető)
  • Felfutási időt a jel maximális értékének 10%-a és 90%-a között mérjük. [Aquire] >> [Averaging] után [QickMeas] >> [Time] >> [Rise Time] -mal lehet beépített funkcióval pontos értéket kapni.
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau } időállandót a 0V-ról Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u = \frac{U_{max}}{RC} } feszültségre való felfutás kezdeti Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m \left. {\frac{{dv(t)}} {{dt}}} \right|_{t = 0} = \left. {\frac{U_{max}} {{R^2 C^2 }}e^{\frac{{ - t}} {{RC}}} } \right|_{t = 0} = \frac{U_{max}} {{R^2 C^2 }} } meredekségből könnyen megkaphatjuk: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau = \frac{u}{m} = RC } . Azaz elég egy vonalzó segítségével megjósolni, hogy a kurzorral beállított magas szintet hol fogja elérni a kezdeti meredekség, és a felfutás kezdetétől számítva eddig tart az időállandó.
  • Ha a jel csúcsértékének 50%-át T idő alatt éri el, akkor Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0,5 = 1 - e^{ - \frac{1} {\tau } \cdot T} } alapján Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau = \frac{{ - T}} {{\ln (1 - 0,5)}} } . Ennek a mérésnek a leolvasásból származhat hibája: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta \tau = \frac{{\partial \tau }} {{\partial T}}\Delta T = \frac{{ - \Delta T}} {{\ln (1 - 0,5)}} }

1.3. Felüláteresztő szűrő időtartománybeli vizsgálata

Egy kis Jelek: Szűrők ugrásválaszának levezetése

FIGYELEM! A vir-en a beugrók megoldásánál el van írva a az aluláteresztő szűrő ugrásválasza. Fent már jól szerepel, azaz:

  • Aluláteresztő szűrő átmeneti függvénye / ugrásválasza : Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t) = \varepsilon (t)\left( {1 - e^{ - \frac{t} {{RC}}} } \right) }

A viren: 1/RC-vel rosszul teszik, hogy megszorozzák a helyes kifejezést. Addig jó, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W(s)=\frac {\frac{1}{sC}}{\frac{1}{sC}+R}=\frac{1}{1+sRC}=\frac{1}{RC} \cdot \frac{1}{s + \frac{1}{RC}} } Ebből az impulzusválasz Laplace-visszatranszformálás után szépen látható: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle w(t) = \frac{1}{RC} e^{\frac{-t}{RC}} } Eddig OK.

A Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V(s)=\frac{1}{s} \cdot W(s) } . azaz most Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V(s)=\frac{1}{s(1+sRC)} } Ezt a kifejezést a parciális törtekre bontással: A számlálók megfeleltetésével: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{RC} = A( \frac{1}{RC} + s) + Bs = (A+B)s + \frac{A}{RC} } Innen látszik (az azonos kitevőjű tagok együtthatóinak egyenlőségéből), hogy: A=1 továbbá A+B=0, innen B=-1 Tehát: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V(s) = \frac{1}{s} - \frac{1}{s + \frac{1}{RC}} } . Ennek az inverz Laplace-ja: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t) = \epsilon (t) - \epsilon (t) \cdot e^{\frac{-t}{RC}} = (1-e^{\frac{-t}{RC}} \cdot \epsilon (t) ) } . Ellenőrzés képpen tényleg Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{d v(t)}{dt} = w(t) }

  • A vir-es megoldásokban, amiket eddig láttam, ez szerepel: 1/(RC)*(1-e^(-t/RC))*Epszilon(t) No ez rossz.*

De szerintem amúgy is logikus, hogy ha ráadunk a szűrőre egységnyi feszültséget, ez állandósult állapotban, egy kis idő múlva egészében megjelenik a kimeneten is (csak egy ellenállás van ekkor a ki- és bemenet közt, de ezen nem esik feszültség, ha nem folyik rajta áram) Így nincs értelme R*C-vel leosztani.

A felüláteresztő szűrő ugrásválasza pedig: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V(s) = \frac{1}{s} \cdot \frac{R}{\frac{1}{sC} + R} = \frac{1}{\frac{1}{RC} + s} } Ennek inverz Laplaceja: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(t) = \varepsilon (t)\left( { e^{ - \frac{t} {{RC}}} } \right) } . Impulzusválasza (súlyfüggvénye) pedig ennek időbeli általánosított deriváltja, vagy s-tartomány beli Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s} -sel való szorzottja: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle w(t) = \epsilon (t) \frac{-1}{RC} e^{\frac{-t}{RC}} + v(t=+0) \delta (t) = \epsilon (t) \frac{-1}{RC} e^{\frac{-t}{RC}} + \delta (t) } illetve Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W(s) = \frac{s}{\frac{1}{RC} + s}}