Deep learning alkalmazása a vizuális informatikában
A tárgy célja a GPU alapú deep learning technikák alkalmazásának bemutatása a vizuális informatika területén (gépi látás, alakzatfelismerés, textúra és optikai modell szintézis, zajszűrés, szuperfelbontás, tomográfia), megismertetve a hallgatókat a képi információfeldolgozás, valamint a látás alapú robotika feladataival, a GPGPU megközelítés elemeivel, és ezekre a feladatokra a mélytanulás alkalmazásával.
Követelmények
Előtanulmányi rend
- Ajánlott: Matematika, Számítógépes grafika.
A szorgalmi időszakban
- Az aláírás feltételei:
- A házi feladat sikeres leadása.
- Pótlási lehetőségek:
- A házi feladat a pótlási hét végéig pótolható, különeljárási díj befizetése nélkül.
A vizsgadőszakban
- Vizsga: van, írásbeli, félév teljes anyagából. 40% teljesítés szükséges a minimumhoz.
Félévvégi jegy
- A félévvégi osztályzatot a hallgatók a házi feladat (50%) és a vizsgajegy (50%) alapján kapják.
Segédanyagok
Ajánlott könyvek
- Rajalingappaa Shanmugamani, Deep Learning for Computer Vision, Pack Publishing, ISBN 9781788295628, 2018
- John C. Russ, F. Brent Neal, The Image Processing Handbook, 7th edition, CRC Press, ISBN 149874026X, 2016
- Jason Sanders, Edward Kandrot, CUDA by Example, Addison-Wesley press, ISBN 0-13-138768-5, 2010
- GPU Computing Gems – Emerald Edition, Editor: Wen-mei W. Hwu., Morgan Kaufmann Publisher,ISBN: 9780123849885, 2011
- Programming Massively Parallel Processors, David B. Kirk, Wen-mei W. Hwu, Morgan Kaufmann Publisher, ISBN 978-0-12-381472-2, 2010
Ajánlott oldalak
Házi feladat
2021. tavasz
Idén 4 kisházi volt, amik opcionálisak voltak a jó jegyért. Bármilyen környezet használható volt hozzájuk, célszerű volt a Google Colab használata, de C++-ban is lehetett próbálkozni a házik 2. felénél. Szerintem elég könnyűek voltak és a laborokon túl segítették az anyag megértését, elsajátítását. Ha ezek mentek, akkor a vizsgán sem lesz gond.
A kisházik témái:
- gépi tanulás alapműveletei, egyszerű architektúrák (konvolúció, lossok, konvolúciós hálók)
- CUDA kernelek, többszintű kernelek, algoritmusok
- paraméterezhető hálók, optimalizáció, technikák eredmény pontosság növelésére
- bemeneti adathalmaz előállítás, képtranszformációk utáni teljesítmény elemzés
Laboratórium
1. Labor
- ...
Vizsga
- ...