Analízis (MSc) típusfeladatok

A VIK Wikiből
A lap korábbi változatát látod, amilyen Csala Tamás (vitalap | szerkesztései) 2016. május 24., 22:36-kor történt szerkesztése után volt.

Integrál trafók témakör

Elmélet

1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) Írjuk fel a skálázó egyenletet!

Laplace-trafó diff-egyenlet rendszer

1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

Fourier diff-egyenlet

1) Oldjuk meg Fourier transzformáció segítségével!

Fourier trafó szabályok alkalmazása

1) Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy

Disztribúciók

1) Adjuk meg és lineáris kombinációjaként az disztribúciót! ====

Wavelet trafók

1) Legyen , a mexikói kalap wavelet.

a) Legyen .

b) Legyen . Tudjuk, hogy .

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) Oldjuk meg Fourier módszerrel!

Parcdiff egyenletek (véges differenciák)

1) Véges differenciák segítségével, h=\frac{1}{2} felosztás mellett adjuk meg az u_{1,2} értékét, ha