Számítógépes látórendszerek - Ellenőrző kérdések: Detektálás, Osztályozás

A VIK Wikiből
A lap korábbi változatát látod, amilyen Horváth Gábor (vitalap | szerkesztései) 2015. június 5., 18:59-kor történt szerkesztése után volt. (→‎Gépi tanulás)


Mit jelent a detektálás/lényegkiemelés, illetve az osztályozás? Milyen nehézségekkel kerülünk szembe az egyes feladatok esetén?

Detektálás/lényegkiemelés

Bonyolultabb, érdekes képrészletek, objektumok azonosítása.

Nehézség

  • Különböző nézőpont
  • Transzformáció

Ismertesse a template matching algoritmust! Milyen transzformációk esetén biztosít invarianciát az algoritmus?

Transzformációk

  • Megvilágítás
    • A kereszt-korreláció se az additív, se a multiplikatív megvilágítás változásra sem invariáns!
    • Megoldás: Normalizáljuk a pixelértékeket!
      • Vonjuk le az átlagos intenzitást
      • És osszuk el őket a varianciájukkal
  • Skála
    • Nincs skálainvariancia!
    • Template piramissal azért megoldható...
  • Elforgatás
    • Nincs elforgatás invariancia!
    • Több, előre elforgatott template

Mit jelent a gépi tanulás?
Milyen típusai és tipikus feladatai vannak?
Mi az a bináris klasszifikációs probléma és hogyan terjeszthető ki nem bináris esetre?
Mit jelent a lineáris szétválaszthatóság?

Gépi tanulás

A mesterséges intelligencia egy fajtája. Explicit programozás nélkül old meg bizonyos feladatokat.

Típusai/feladatai

  1. Felügyelt tanulás (Supervised Learning)
    1. A tanítást példák alapján csináljuk → Az algoritmus ismeri a tanító példákra adandó helyes válszt
  2. Felügyelet nélküli tanítás (Unsupervised Learning)
    1. Itt is vannak példák, de a helyes válasz nem ismert.
  3. Megerősítéses tanulás (Reinforcement Learning)
    1. A működés során döntések sorozatát kell meghozni, de visszajelzés csak a sorozat végén lehetséges.
    2. Pl.: Járművezetés, Sakk

Ismertesse a kNN algoritmust!

K Nearest Neighbork legközelebbi szomszéd Az osztályozandó példához legközelebb eső k tanító adatot vesszük figyelembe Az ő címkéjük alapján dönt az algoritmus az adott problémáról.

Ismertesse a Bayes hálók működését!

Ismertesse a percepton/neuron algoritmust! Hogyan terjeszthető ki nemlineáris esetre?

Ismertesse a Support Vector Machine (SVM) algoritmust! Hogyan terjeszthető ki nemlineáris esetre?

Mi a klaszterezés, mire jó? Ismertessen klaszterező algoritmusokat! Mi az erős és a gyenge hozzárendelés, és hogyan kapcsolódik az egyes algoritmusokhoz?

Mutassa be a főkomponens analízis (PCA) algoritmust!

Mi a mély tanulás és mire jó? Mutassa be a legfontosabb mély tanuló struktúrákat!

2015-ben nem kell!

Ismertesse a Bag of Words osztályozó algoritmus működési elvét! Milyen előnyei és hátrányai vannak más módszerekkel szemben?

Mutassa be a rész alapú (part based) detektorok működését! Milyen előnyöket és hátrányokat tud megemlíteni?