Számítógépes látórendszerek - Ellenőrző kérdések: Detektálás, Osztályozás
A VIK Wikiből
Mit jelent a detektálás/lényegkiemelés, illetve az osztályozás? Milyen nehézségekkel kerülünk szembe az egyes feladatok esetén?
Detektálás/lényegkiemelés
Bonyolultabb, érdekes képrészletek, objektumok azonosítása.
Nehézség
- Különböző nézőpont
- Transzformáció
Ismertesse a template matching algoritmust! Milyen transzformációk esetén biztosít invarianciát az algoritmus?
Mit jelent a gépi tanulás? Milyen típusai és tipikus feladatai vannak? Mi az a bináris klasszifikációs probléma és hogyan terjeszthető ki nem bináris esetre? Mit jelent a lineáris szétválaszthatóság?
Ismertesse a kNN algoritmust!
K Nearest Neighbor – k legközelebbi szomszéd Az osztályozandó példához legközelebb eső k tanító adatot vesszük figyelembe Az ő címkéjük alapján dönt az algoritmus az adott problémáról.
Ismertesse a Bayes hálók működését!
Ismertesse a percepton/neuron algoritmust! Hogyan terjeszthető ki nemlineáris esetre?
Ismertesse a Support Vector Machine (SVM) algoritmust! Hogyan terjeszthető ki nemlineáris esetre?
Mi a klaszterezés, mire jó? Ismertessen klaszterező algoritmusokat! Mi az erős és a gyenge hozzárendelés, és hogyan kapcsolódik az egyes algoritmusokhoz?
Mutassa be a főkomponens analízis (PCA) algoritmust!
Mi a mély tanulás és mire jó? Mutassa be a legfontosabb mély tanuló struktúrákat!
2015-ben nem kell!