Matematika A3 - Differenciálegyenletek: osztályozások és definíciók

A VIK Wikiből
A lap korábbi változatát látod, amilyen Szikszayl (vitalap | szerkesztései) 2014. március 13., 18:50-kor történt szerkesztése után volt.
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

Definíció

A differenciálegyenlet olyan egyenlet, mely tartalmaz egy ismeretlen függvényt (szokásosan ) és annak deriváltjait.

Osztályozások

Közönséges - parciális differenciálegyenletek

Közönséges, ha az ismeretlen függvény egyváltozós, parciális, ha többváltozós.

Példák

Az első egyenlet közönséges, a második parciális.

Lineáris - nem lineáris differenciálegyenletek

Lineáris, ha nem szerepel az egyenletben a deriváltak szorzata, egyébként nem lineáris.

Példák

Az első egyenlet lineáris, a második nem.

Homogén - inhomogén differneciálegyenletek

Homogén, ha az egyenlet nem tartalmaz független változót vagy konstans tagot, inhomogén, ha igen.

Példák

Az első egyenlet homogén, a második nem.

Állandó-, vagy függvényegyütthatós differenciálegyenletek

Állandó együtthatós, ha a deriváltak együtthatói állandók, függvény együtthatós, ha függvények.

Példák

Az első egyenlet állandó-, a második függvény együtthatós.

Első-, másod-, n-edrendű differenciálegyenletek

A legnagyobb derivált rendje határozza meg az egyenlet rendjét.

Példa

A fentiek mind elsőrendűek, alább egy harmadrendű.