Laboratórium 2 - 8. Mérés ellenőrző kérdései

A VIK Wikiből


1. Milyen identifikációs rendszermodelleket ismer?

AR, ARX, IV, ARMAX stb. Ezek a modellek a MATLAB System Identification (röviden IDENT) toolboxa segítségével identifikálhatók. ARX modell a klasszikus LS (least squares) becsléssel is identifikálható. A módszerek érzékenyek a jel és zaj korreláltságára, amelyen segédváltozók (IV) alkalmazásával lehet javítani. Az ARMAX modell már általánosabb zajstruktúrát alkalmaz, de identifikációja numerikusan bonyolultabb módszert igényel, nevezetesen a kvázi Newton-módszert. Lásd elméleti alapok.

2. Miért van szükség identifikációra?

Az identifikáció célja dinamikus modell nyerése az ismeretlen rendszerről, a szabályozástechnikában a szabályozott szakaszról. Dinamikus modell hiányában csak kísérletezéssel tudnánk egyszerű szabályozók paraméterbeállítását megkeresni. A dinamikus modell ismerete lehetővé teszi elméletileg megalapozott szabályozások tervezését, amely minimálissá teszi a reális folyamaton való kísérletezést. A modell jó, ha azonos bemenő jel mellett a kimenetén hasonlóan válaszol, mint az ismeretlen rendszer. A modellel szemben pótlólagos elvárásaink is lehetnek, mint például az, hogy az identifikációval kapott diszkrétidejű modellnek legyen folytonosidejű megfelelője. Ez a negatív valós pólusokkal áll kapcsolatban a z-tartományban.

3. Mit értünk állapot-visszacsatolás alatt?

Állapot-visszacsatolás alatt azt értjük, hogy a szabályozó kimenő jelét (a beavatkozó jelet) az állapotokból állítjuk elő. Lineáris állapot-visszacsatolás esetén folytonos időben , diszkrét időben pedig , vagy röviden , ahol T a mintavételi idő. Egyváltozós (SISO) rendszer esetén K sorvektor.

4. Mi lesz állapot-visszacsatolás esetén a zárt rendszer karakterisztikus egyenlete?

Folytonos időben a szakasz állapotegyenlete , a zárt rendszer állapotegyenlete, a zárt rendszer karakterisztikus egyenlete pedig xBKAx)(−=&))(det()(BKAsIsc−−=ϕ. Diszkrét időben a szakasz állapotegyenlete iiiuxxΓΦ+=+1, a zárt rendszer állapotegyenlete iixKx)(1ΓΦ−=+, a zárt rendszer állapotegyenlete pedig ))(()(KzIzcΓΦϕ−−=. A pólusáthelyezési feladatban előírjuk a zárt rendszer karakterisztikus egyenletét (ami ekvivalens a zárt rendszer pólusainak, azaz a velük megegyező sajátértékeknek az előírásával), és keressük az ehhez szükséges állapot-visszacsatolást. Vegyük észre az algebrai hasonlóságot a folytonosidejű és diszkrétidejű feladat esetén.

5. Mik a fő problémák az egyszerű u=-Kx állapot-visszacsatolás esetén tipikus irányítási rendszerekben?

6. Mi a domináns póluspár?

7. Mi a kapcsolat a kéttárolós lengő tag csillapítása és csillapítatlan sajátfrekvenciája valamint a hozzátartozó pólusok között?

8. Mi biztosítja a konstans alapjel követését állapot-visszacsatolt rendszerekben?

9. Miért szükséges állapotmegfigyelő alkalmazása?

10. Mi a kapcsolat a "terhelés" elnevezés és a zavaró jel között?

11. Hogyan küszöbölhető ki a terhelés hatása?

12. Mit értünk diszkrétidejű aktuális megfigyelő alatt és mik az előnyei?

13. Miért érdemes integrátort tenni a szabályozási körbe?

14. Hogyan képződik le egy folytonos idejű pólus a diszkrétidejű tartományba?

15. Mit okoznak a megfigyelő sajátértékei a zárt rendszer átviteli függvényében?