Laboratórium 2 - 5. Mérés ellenőrző kérdései

A VIK Wikiből


1. Definiálja az aszimmetrikus erősítőkre az üzemi paramétereket!

Feladat:

Definiálja az aszimmetrikus erősítőkre az illesztési jellemzőket (bemeneti és kimeneti impedanciákat) az átviteli jellemzőket (feszültség- és áramerősítést, transzfer impedanciát és admittanciát)!


Megoldás:

Az erősítők olyan elektronikus áramkörök, amik a fogyasztó felé nagyobb teljesítményt képesek leadni, mint amekkorát a meghajtó hálózatból felvesznek.
Aszimmetrikus (hárompólusú) erősítőről akkor beszélünk, ha a meghajtó hálózatot helyettesítő generátor és a terhelés is egyik kapcsán földelt kétpólus.

Az üzemi paraméterek fontos tulajdonsága, hogy értékük (különösen visszacsatolt erősítők esetén) függ az erősítő bemeneti és kimeneti lezárásától, ezért meg kell adni, hogy az adott üzemi paraméterek milyen lezárásokhoz tartoznak.

Üzemi paraméterek
Megnevezése Jele Definíciója Dimenziója
Bemeneti impedancia Zbe ubeibe Ω
Kimeneti impedancia Zki Értelmezés sikertelen (formai hiba): {\displaystyle -{u_{kiü} \over i_{kir}}} Ω
Feszültségerősítés Au ukiube
Áramerősítés Ai ikiibe
Transzfer impedancia ZA ukiibe Ω
Transzfer admittancia YA ikiube S

2. Hogyan számítható a bemeneti és a kimeneti időállandó a földelt emitteres alapkapcsolásoknál?

A bemeneti RC tag egy soros rezgőkör, ebből a bemeneti időállandó:

τbe=(R1×R2)×[(1+β)(rd+RE)]Cbe


A kimeneti időállandó:

τki=(RC×Rt)Cki

3. Hogyan definiáljuk a felfutási és a lefutási időket?

Felfutási idő: Az az idő, amíg jelváltáskor a jel az amplitúdójának 10%-ról a 90%-ra nő.

Lefutási idő: Az az idő, amíg jelváltáskor a jel az amplitúdójának 90%-ról a 10%-ra csökken.

4. Mi a tetőesés és mi okozza?

Tetőesés: A tetőesés impulzusok esetén az impulzus amplitúdójának kismértékű csökkenése az idővel. Általában százalékos értékben adják meg.

A tetőestést az erősítés útjába sorosan eső kondenzátorok okozzák. Mivel a négyszögjel magas értéke alatt konstans a jel, tehát 0 Hz frekvenciájú, ezért azt a kondi "ki akarja szűrni", azaz úgy viselkedik, mint egy felüláteresztő RC struktúra.

5. Milyen összefüggés van a felfutási idő és a felső határfrekvencia között?

A felfutási idő annál nagyobb, minél lassabban változik jel. Egy jel akkor tud gyorsan megváltozni (ugrani), ha nagyfrekvenciás komponensei is vannak. A felső határfrekvencia felett, azonban elnyomódnak a frekvenciakomponensek, tehát annál kisebb a felfutási idő, minél nagyobb a felső határfrekvencia.

Képletszerűleg:

tRISE12πfmax

6. Milyen összefüggés van az alsó határfrekvencia és a tetőesés között?

Ha csökkentjük az alsó határfrekvenciát, akkor növeljük a leglassabb időállandót, így "lassabban szűrődik ki az egyenszint", tehát csökkenteni lehet vele a tetőesést.

7. Hogyan határozható meg egy alapkapcsolás tranzisztorának munkapontja egy és két tápfeszültséges kapcsolásban?

Feladat: Hogyan határozható meg egy földelt emitteres / kollektoros / bázisú alapkapcsolás tranzisztorának munkapontja egy és két tápfeszültséges kapcsolásban?


Megoldás:

Földelt emitteres, egytelepes alapkapcsolás:

Munkaponti analízisnél egyenáramokkal és egyenfeszültségekkel dolgozunk, ennélfogva a kondenzátorok szakadásnak, illetve a kisjelű feszültséggenerátor pedig rövidzárnak vehető.

Felírva a tranzisztor bázisára egy Thevenin helyettesítő képet, majd pedig egy huroktörvényt, valamint felhasználva a tranzisztor karakterisztikáját, adódik az alábbi egyenletrendszer:

UtR2R1+R2=(R1×R2)(1A)iE+uBE+REiE


iE=IE00[exp(uBEUT)1]


Ez azonban csak iterációval lenne megoldható, de jó közelítéssel UBE00.6V állandónak vehető.

Tehát az egyenletrendszer redukálható egy egyismeretlenes egyenletté:

IE0=UtR2R1+R2UBE0RE+(R1×R2)(1A)


A kolletktor-emitter körre felírható hurokegyenlettel pedig számítható a tranzisztor UCE0 munkaponti értéke:

UCE0=Ut(RE+ARC)IE0



Földelt emitteres, kéttelepes alapkapcsolás:

Nagyjából ugyanaz, mint az egytelepes, csak nincs bázisosztó (R1 és R2) és kondenzátor a tranzisztor bázisán, valamint az emitterellenállás nem földre hanem negatív tápfeszre van kötve:


UBE00.6V


IE0=UtUBE0RE+Rg(1A)


UCE0=2Ut(RE+ARC)IE0



Földelt kollektoros, egytelepes alapkapcsolás:

Ugyanazzal a logikával, mint a földelt emitteres alapkapcsolásnál:


UBE00.6V


IE0=UtR2R1+R2UBE0RE+(R1×R2)(1A)


UCE0=UtREIE0



Földelt kollektoros, kéttelepes alapkapcsolás:

Szerintem ez már menni fog ez alapján mindenkinek ;)



Földelt bázisú, egytelepes alapkapcsolás:

Ugyanazzal a logikával, mint a földelt emitteres alapkapcsolásnál:


UBE00.6V


IE0=UtR2R1+R2UBE0RE+(R1×R2)(1A)


UCE0=Ut(RE+ARC)IE0



Földelt bázisú, kéttelepes alapkapcsolás:

Szerintem ez már menni fog ez alapján mindenkinek ;)

8. Hogyan számíthatók ki a bipoláris tranzisztorok vezetés (g) és hibrid (h) paraméterei a tranzisztorok munkaponti adataiból?

Őszintén szólva fogalmam sincs hogy ez a jó válasz. Aki tudja az egzakt képleteket, amikkel kapásból meghatározható a munkaponti adatokból a vezetés és hibrib paraméterek, az NE tartsa magában. Évek óta homály lengi körül ezt a kérdést, valaki oldja már meg! :D


Hibrid (h) paraméterek:

u1=h11i1+h12u2

i2=h21i1+h22u2

Fontos, hogy az i1,i2,u1,u2 változók mást jelentenek, attól függően, hogy a tranzisztor földelt bázisú vagy földelt emitteres kapcsolásban van-e. Ennek megfelelően beszélünk földelt bázisú és földelt emitteres h-paraméterekről. Ezeket a b és e indexszel különböztetik meg egymástól.

A hibrid paraméteres mérési úton könnyen meghatározhatóak:

h11=dU1dI1U2=const A bemeneti ellenállás rövidrezárt kimenet mellett.


h12=dU1dU2I1=const A feszültség visszahatás szakadt bemenet mellett.


h21=dI2dI1U2=const Az áramerősítés rövidrezárt kimenet mellett.


h22=dI2dU2I1=const A kimeneti vezetés szakadt bemenet mellett.


A félvezető katalógusok diagramok formájában közlik a h paraméterek munkapontfüggését. Az adatlap táblázatos formában szolgáltatja az egy munkapontra vonatkozó adatokat, valamint két diagram mutatja a h paramétereknek az IC és UCE munkaponti adatoktól való függését.


Vezetés (g) paraméterek:

i1=g11u1+g12u2

i2=g21u1+g22u2

A hibrid karakterisztika négy paraméterének ismeretében karakterisztikaátváltó táblázatok segítségével, már könnyen meghatározhatóak a vezetési (admittancia) karakterisztika paraméterei.

9. Hogy számíthatók a tranzisztoros alapkapcsolások jellemzői a tranzisztorok g vagy h paramétereinek ismeretében?

Feladat: Hogyan számíthatók ki a bipoláris tranzisztoros alapkapcsolások feszültségerősítése, bemeneti ellenállása, kimeneti ellenállása a tranzisztorok g vagy h paramétereinek ismeretében?


Megoldás:

10. Rajzolja fel a tranzisztorok nagyfrekvenciás hibrid p helyettesítőképét és határozza meg az egyes elemeinek értékét!

Feladat: Rajzolja fel a bipoláris tranzisztorok nagyfrekvenciás hibrid p helyettesítőképét és határozza meg a munkaponti adatok ismeretében a helyettesítőkép egyes elemeinek értékét!


Megoldás:

11. Mit értünk fizikai paraméterek alatt?

12. Milyen hatással van az emitter ellenállás a nagyfrekvenciás időállandókra?

13. Rajzolja fel a földelt emitteres alapkapcsolás kisfrekvenciás Bode-diagramját!

14. Milyen hatással van az emitterkondenzátor a földelt emitteres erősítő Bode-diagramjára?