Itt gyűjtjük a szóbeli vizsgán kapott feladatokat. A bennük szereplő számadatok nem túl lényegesek, a feladattípusokat próbáljuk összegyűjteni. Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletesebb megoldásokkal.
Sablon:Noautonum
50. Feladat: Két áramjárta vezető
Két egymással párhuzamos végtelen hosszú vezető egymástól 4 m távolságban. Az egyiken 2 A, a másikon 3 A folyik. Mekkora erő hat az egyik vezeték 1 m-es szakaszára?
Megoldás
Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.
, ahol a H-t egy kör vonalán integráljuk, aminek a középpontját merőlegesen döfi át a vezeték, csak az egyik áram egy át rajta, a másik pont nem.
, ahol I a konstans áramerősség, l pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m. Derékszöget zárnak be a vektorok, így egyszerű szorzás lesz.
Tudjuk még, hogy vákuumban.
Innen a megoldás:
Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:
58. Feladat: Toroid tekercs
Hányszorosára változik egy L önindukciós együtthatóval rendelkező I1=2A árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan I2=5A-re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?
Megoldás
Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.
Egy bármilyen tekercs fluxusa az képletből számolható. Ez alapján a toroid fluxusváltozása:
Egy bármilyen tekercs energiája számolható a
képlet alapján. Tehát a toroid energiaváltozása:
81. Feladat: Távvezeték megadott feszültségű pontjának meghatározása
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: R'=20 mOhm/m és G'=5 uS/m. Egy U0 egyenfeszültségű feszültség forrást kapcsolunk rá. Határozza meg azt a z távolságot, ahol a feszültség U0/2 lesz!
Megoldás
Első körben meg kell határoznunk, hogy mennyi a távvezeték csillapítása (alfa), feltéve hogy omega=0, mivel egyenfeszültséggel gerjesztjük a távvezetéket:
Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a a feszültség amplitúdója az eredeti érték felére:
86. Feladat: Ideális távvezeték, számítás lánckarakterisztikával
Adott egy ideális távvezeték, hullámimpedanciája , hossza . A távvezeték végén adott az áram és a feszültség komplex amplitúdója: 2A illetve 500V. Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején.
Megoldás
így
. Miután ez van, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét:
, és ebbe behelyettesítve megkapjuk a megoldást.
94. Feladat: Zárt vezetőkeretben indukált áram
Egy ellenállású zárt vezetőkeret fluxusa , ahol . Mekkora a keretben folyó áram effektív értéke?
Megoldás
Az indukálási törvény alapján:
. Behelyettesítve a körfrekvencia értékét:
. Innen a feszültség effektív értéke
, az áram effektív értéke pedig
.
98. Feladat: Zárt vezetőhurokban indukált feszültség
Az xy síkon helyezkedik el egy 3m sugarú kör alakú zárt "l" görbe. A mágneses indukció a térben homogén, z irányú komponense 40 ms idő alatt 0,8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben a "l" görbe mentén?
Megoldás
Az indukálási törvény alapján:
107. Feladat: Hengeres vezetőben disszipált hőteljesítmény
Egy 1.5 mm^2 keresztmetszetű, 3 m hosszú hengeres vezetőben 10 A amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység delta=9.7 mm, a fajlagos vezetőképesség pedig szigma=3.7*10^7 S/m. Mennyi a vezetőben disszipált hőteljesítmény?
Megoldás
A vezető sugara:
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima "l" hosszúságú, "A" keresztmetszetű és "szigma" fajlagos vezetőképességű vezetékdarabnak.
A vezetékben disszipálódó hőteljesítmény (vigyázat csúcsérték van megadva és nem effektív):
149. Feladat: Koaxiális kábelben áramló teljesítmény
Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\> (ahol a radiális irányú egységvektor),
<br\> (ahol a fi irányú egységvektor).<br\>
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r1, a külső vezető belső sugara r2, a vezetők ideálisak, a kábel tengelye a z irányú.
Megoldás
A Poynting-vektor kifejezése:
(ahol
a z irányú egységvektor). <br\>Innen a teljesítmény: