Algoritmuselmélet - PZH, 2013.04.24.

A VIK Wikiből
A lap korábbi változatát látod, amilyen Arklur (vitalap | szerkesztései) 2013. június 15., 21:49-kor történt szerkesztése után volt. (→‎2. Feladat (Van megoldás))


2013.04.24. PZH megoldásai

1. Feladat (Van megoldás)

Egy algoritmus lépésszámáról tudjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + O(n^2)} és tudjuk azt is, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T(1)=T(2)=T(3)=1} . Bizonyítsa be, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T(n)=O(n^2)} .

Megoldás

Van olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c > 0} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n_0} , hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n>n_0} esetén Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T(n)=T\left(\left \lfloor \frac{n}{4} \right \rfloor\right)+O(n^2) \leq T\left(\left \lfloor \frac{n}{4} \right \rfloor\right)+cn^2 \leq T\left(\left \lfloor \frac{n}{16} \right \rfloor\right)+c\left(n^2+\left(\frac{n^2}{4^2} \right)\right) \leq T\left(\left \lfloor \frac{n}{64} \right \rfloor\right) + c\left(n^2+\left(\frac{n^2}{4^2} \right)+\left(\frac{n^2}{16^2} \right)\right) \leq \dots } Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dots \leq 1+cn^2\cdot\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{16} \right )^i\right)}

Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} } , ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k = \left \lfloor log_4n \right \rfloor, r = \frac{1}{16}} , vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1-\frac{1}{16}^{\left \lfloor log_4n \right \rfloor+1}} {1-\frac{1}{16}}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1-\frac{1}{16}^{\left \lfloor log_4n \right \rfloor+1}} {1-\frac{1}{16}} < 2 ,} ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n \geq 1} (A lényeg, hogy felülről becsüljük!)

Tehát Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T(n) = \dots \leq 1+2 \cdot cn^2=O(n^2)}

2. Feladat (Van megoldás)

Adott egy teljes bináris fa, a csúcsaiba egész számok vannak írva, összesen n darab (a fa nem feltétlenül bináris keresőfa). Adjon algoritmust, ami Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n)} lépésben megkeres egy olyan csúcsot a fában, aminek a részfája kupac, és aminek a magassága a legető legnagyobb az összes ilyen csúcs közül.

Megoldás
Megjegyzések a feladathoz
  • Bár nem tartozik a feladathoz, talán érdemes megjegyezzem, hogy bináris kereső fa nem is lehetne, hiszen akkor ott kapásból csak a legalsó szinten lévő elemek lehetnek kupacok (egy 1 elemet tartalmazó kupac), hiszen bináris keresőfánál balra kisebbek, jobbra nagyobbak vannak, míg kupacnál balra és jobbra is nagyobbak vannak.
  • Továbbá a teljes bináris fára azért van szükség, mert így "jóval egyszerűbb" a feladat, és nem kell szívózni annak vizsgálatával, hogy az adott részfa teljes bináris fa-e (ugyebár ez a kupac egyik fontos tulajdonsága).

Minden csúcsban 3 adatot fogunk számon tartani: Érték (ez persze adott már), részfa magassága (jelüljük M-mel), és egy bool érték (IGAZ/HAMIS, jelöljük B-vel), hogy igaz-e a részfájára, hogy az kupac.

  • Első lépésben a legalsó szinteken lévő csúcsok esetén Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle M:=1, B:=IGAZ} .
  • Legyen egy változónk, amiben tároljuk, hogy melyik csúcsra igaz, hogy a részfája a "legnagyobb" kupac (kezdeti értéke legyen mondjuk az egyik legalsó szinten lévő csúcs).
  • Minden további szinten az a feladatunk, hogy megnézzük az adott csúcs (x) bal, és jobb fiát Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (JOBB(x), BAL(x))} .
    • Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e:
      • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle BAL(x),JOBB(x) > x;BAL(x).B=JOBB(x).B=IGAZ\Rightarrow\Rightarrow x.M := BAL(x).M+1, x.B := IGAZ} majd a változónkba belerakjuk a csúcsot. Vagyis ha mindkettő nagyobb, és mindkettő kupac tulajdonsággal bír, akkor a csúcs részfa magassága 1-gyel nagyobb lesz, mint az egyik (bal, vagy jobb) fia magassága, és kupac tulajdonságú lesz.
      • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle BAL(x) < x} VAGY Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle JOBB(x) < x} VAGY Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle BAL(x).B=HAMIS} VAGY Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle JOBB(x).B=HAMIS\Rightarrow\Rightarrow x.M := BAL(x).M+1, x.B := HAMIS} . Vagyis ha bármelyik feltétel nem teljesül (valamelyik fia kisebb, avagy valamelyik gyerekére nem igaz, hogy kupac tulajdonságú), akkor maga a csúcs sem lehet már kupac tulajdonságú (itt a magasságot nem is kéne beállítani, de...hát miért is ne).
Mivel minden csúcsot csak egyszer látogatunk meg, így Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n)} lépésben megyünk végig a gráfon.

3. Feladat (Van megoldás)

Kukori és Kotkoda egy-egy bináris fára gondolnak (nem feltétlenül bináris keresőfákra). Következik-e, hogy a két fa azonos, ha

(a) inorder bejárással kilolvasva a két fát ugyanazt a számsorozatot kapják?

(b) preorder bejárással kiolvasva a két fát ugyanazt a számsorozatot kapják?

Megoldás

Mindkét esetben 1-1 ellenpéldát kell szolgáltatni:

  • a)

Fájl:Egyik.png Fájl:Masik.png

Mindkét gráfot A-B-C-D-E sorrendben olvassuk ki, de mégsem egyeznek meg, tehát nem következik.

  • b)

Fájl:Egyik 1.png Fájl:Masik 2.png

Mindkét gráfot F-G-H-J-K sorrendben olvassuk ki, de mégsem egyeznek meg, tehát nem következik.

4. Feladat

TODO

Megoldás
TODO

5. Feladat

TODO

Megoldás
TODO

6. Feladat (Van megoldás)

Adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n } hosszú tömb. Tudjuk, hogy a tömb első néhány (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k } darab) elem 0, a többi 1, de Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k } értékét nem ismerjük. Adjon Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(logk) } (nem Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(logn) } )1 összehasonlítást használó algoritmust, ami meghatározza Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k } értékét.

1 A feladatban Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(logk) } szerepel, de az csak elgépelés.

Megoldás
  • Először nézzük meg, hogy az első 2 elem Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-1} -e, ha igen, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=1 } .
  • Ha nem, akkor minden további lépésnél ugorjunk a 2x annyiadik cellába (ez legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m } ), ha pedig túl lépnénk a tömböt ezzel, akkor az utolsóba.
  • Vizsgáljuk meg, hogy "hol vagyunk": (az aktuális cellát, és a 2 szomszédját)
    • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-0-0} -t látunk, akkor ugrunk megint 2x akkorát (ugyanazzal a kritériummal, mint előbb).
    • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-0-1} -t látunk, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=m } .
    • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-1-1} -t látunk, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=m-1 } .
    • Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1-1-1} -t látunk, akkor egy bináris keresés segítségével(1) a 2 legutóbbi vizsgált elem közötti cellákban megkeressük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-1-1} , vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-0-1} felállást, és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} értékét a látottak alapján beállítjuk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ( k=m-1 } vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k=m )} .

(1) Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0-0-0} -t lát, jobbra lép, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1-1-1} -t, akkor balra, másik 2 esetben pedig találatunk van.

  • Az algoritmus működése alapján belátható, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(logk) } időben fut.

7. Feladat

TODO

Megoldás
TODO

8. Feladat (Van megoldás)

Bizonyítsa be, hogy egy piros-fekete fában egy levél testvére vagy levél, vagy piros csúcs!

Megoldás
  • Összesen 5 felállás lehet: Fájl:Algel pzh 2012tavasz 8 1.png
    • Ebből az 1. és a 4. jó is (a 4. persze csak akkor, ha X az nem a főgyökér).
    • A 3. - kis módosítással - látszik, hogy szintén fenn állhat gond nélkül: Fájl:Algel pzh 2012tavasz 8 2.png
    • Egyedül a 2. és az 5. problémás. Ezek viszont rosszak is, hiszen mindkét esetben elmondható, hogy X-nek a fekete magassága jobbra 1, balra viszont legalább 2, mert az Y csúcsnak legalább 1-1 levél fia van. Tehát belső csúcsnál ilyen állapot nem állhat fent.


  • Az első 2 esetben azt bizonyítottuk, hogy levél testvére lehet levél, vagy piros csúcs.
  • A 3. esetben pedig azt, hogy nem lehet fekete csúcs a levél testvére.
  • Így be is bizonyítottuk, hogy levél testvére CSAK levél, vagy piros csúcs lehet.